DNA methylation of the cytosine in the CpG dinucleotide is typically associated with gene silencing. Genomic analyses have identified low CpG promoters that are both methylated and transcriptionally active, but the mechanism underlying the activation of these methylated promoters remains unclear. Here we show that CpG methylation of the CRE sequence (TGACGTCA) enhances the DNA binding of the C/EBPα transcription factor, a protein critical for activation of differentiation in various cell types. Transfection assays also show that C/EBPα activates the CRE sequence only when it is methylated. The biological significance of this observation was seen in differentiating primary keratinocyte cultures from newborn mice where certain methylated promoters are both bound by C/EBPα and activated upon differentiation. Experimental demethylation by either 5-azacytidine treatment or DNMT1 depletion diminished both C/EBPα binding and activation of the same methylated promoters upon differentiation suggesting that CpG methylation can localize C/EBPα. Transfection studies in cell cultures using methylated tissue-specific proximal promoters identified half-CRE (CGTCA) and half-C/EBP (CGCAA) sequences that need to be methylated for C/EBPα mediated activation. In primary dermal fibroblasts, C/EBPα activates a different set of methylated tissue-specific promoters upon differentiation into adipocytes. These data identify a new function for methyl CpGs: producing DNA binding sites at half-CRE and half-C/EBP sequences for C/EBPα that are needed to activate tissue-specific genes.
We present the thermal stability monitored by circular dichroism (CD) spectroscopy at 222 nm of 100 heterodimers that contain all possible coiled-coil a-a' pairs for 10 amino acids (I, V, L, N, A, K S, T, E, and R). This includes the stability of 36 heterodimers for 6 amino acids (I, V, L, N, A, and K) previously described and 64 new heterodimers including the 4 amino acids (S, T, E, and R). We have calculated a double mutant alanine thermodynamic cycle to determine a-a' pair coupling energies to evaluate which a-a' pairs encourage specific dimerization partners. The four new homotypic a-a' pairs (T-T, S-S, R-R, E-E) are repulsive relative to A-A and have destabilizing coupling energies. Among the 90 heterotypic a-a' pairs, the stabilizing coupling energies contain lysine or arginine paired with either an aliphatic or a polar amino acid. The range in coupling energies for each amino acid reveals its potential to regulate dimerization specificity. The a-a' pairs containing isoleucine and asparagine have the greatest range in coupling energies and thus contribute dramatically to dimerization specificity, which is to encourage homodimerization. In contrast, the a-a' pairs containing charged amino acids (K, R, and E) show the least range in coupling energies and promiscuously encourage heterodimerization.
Basic region-leucine zipper (B-ZIP) proteins are a class of dimeric sequence-specific DNA-binding proteins unique to eukaryotes. We have identified 67 B-ZIP proteins in the Arabidopsis thaliana genome. No A.thaliana B-ZIP domains are homologous with any Homo sapiens B-ZIP domains. Here, we predict the dimerization specificity properties of the 67 B-ZIP proteins in the A.thaliana genome based on three structural properties of the dimeric alpha-helical leucine zipper coiled coil structure: (i) length of the leucine zipper, (ii) placement of asparagine or a charged amino acid in the hydrophobic interface and (iii) presence of interhelical electrostatic interactions. Many A.thaliana B-ZIP leucine zippers are predicted to be eight or more heptads in length, in contrast to the four or five heptads typically found in H.sapiens, a prediction experimentally verified by circular dichroism analysis. Asparagine in the a position of the coiled coil is typically observed in the second heptad in H.sapiens. In A.thaliana, asparagine is abundant in the a position of both the second and fifth heptads. The particular placement of asparagine in the a position helps define 14 families of homodimerizing B-ZIP proteins in A.thaliana, in contrast to the six families found in H.sapiens. The repulsive interhelical electrostatic interactions that are used to specify heterodimerizing B-ZIP proteins in H.sapiens are not present in A.thaliana. Instead, we predict that plant leucine zippers rely on charged amino acids in the a position to drive heterodimerization. It appears that A.thaliana define many families of homodimerizing B-ZIP proteins by having long leucine zippers with asparagine judiciously placed in the a position of different heptads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.