Objectives Discrete choice experiments (DCEs) are increasingly advocated as a way to quantify preferences for health. However, increasing support does not necessarily result in increasing quality. Although specific reviews have been conducted in certain contexts, there exists no recent description of the general state of the science of health-related DCEs. The aim of this paper was to update prior reviews (1990–2012), to identify all health-related DCEs and to provide a description of trends, current practice and future challenges. Methods A systematic literature review was conducted to identify health-related empirical DCEs published between 2013 and 2017. The search strategy and data extraction replicated prior reviews to allow the reporting of trends, although additional extraction fields were incorporated. Results Of the 7877 abstracts generated, 301 studies met the inclusion criteria and underwent data extraction. In general, the total number of DCEs per year continued to increase, with broader areas of application and increased geographic scope. Studies reported using more sophisticated designs (e.g. D-efficient) with associated software (e.g. Ngene). The trend towards using more sophisticated econometric models also continued. However, many studies presented sophisticated methods with insufficient detail. Qualitative research methods continued to be a popular approach for identifying attributes and levels. Conclusions The use of empirical DCEs in health economics continues to grow. However, inadequate reporting of methodological details inhibits quality assessment. This may reduce decision-makers’ confidence in results and their ability to act on the findings. How and when to integrate health-related DCE outcomes into decision-making remains an important area for future research. Electronic supplementary material The online version of this article (10.1007/s40273-018-0734-2) contains supplementary material, which is available to authorized users.
Background As the number and type of cancer treatments available rises and patients live with the consequences of their disease and treatments for longer, understanding preferences for cancer care can help inform decisions about optimal treatment development, access, and care provision. Discrete choice experiments (DCEs) are commonly used as a tool to elicit stakeholder preferences; however, their implementation in oncology may be challenging if burdensome trade-offs (e.g. length of life versus quality of life) are involved and/or target populations are small. Objectives The aim of this review was to characterise DCEs relating to cancer treatments that were conducted between 1990 and March 2020. Data Sources EMBASE, MEDLINE, and the Cochrane Database of Systematic Reviews were searched for relevant studies. Study Eligibility Criteria Studies were included if they implemented a DCE and reported outcomes of interest (i.e. quantitative outputs on participants' preferences for cancer treatments), but were excluded if they were not focused on pharmacological, radiological or surgical treatments (e.g. cancer screening or counselling services), were non-English, or were a secondary analysis of an included study. Analysis Methods Analysis followed a narrative synthesis, and quantitative data were summarised using descriptive statistics, including rankings of attribute importance. Result Seventy-nine studies were included in the review. The number of published DCEs relating to oncology grew over the review period. Studies were conducted in a range of indications (n = 19), most commonly breast (n =10, 13%) and prostate (n = 9, 11%) cancer, and most studies elicited preferences of patients (n = 59, 75%). Across reviewed studies, survival attributes were commonly ranked as most important, with overall survival (OS) and progression-free survival (PFS) ranked most important in 58% and 28% of models, respectively. Preferences varied between stakeholder groups, with patients and clinicians placing greater importance on survival outcomes, and general population samples valuing health-related quality of life (HRQoL). Despite the emphasis of guidelines on the importance of using qualitative research to inform attribute selection and DCE designs, reporting on instrument development was mixed. Limitations No formal assessment of bias was conducted, with the scope of the paper instead providing a descriptive characterisation. The review only included DCEs relating to cancer treatments, and no insight is provided into other health technologies such as cancer screening. Only DCEs were included. Conclusions and Implications Although there was variation in attribute importance between responder types, survival attributes were consistently ranked as important by both patients and clinicians. Observed challenges included the risk of attribute dominance for survival outcomes, limited sample sizes in some indications, and a lack of reporting about instrument development processes. Protocol Registration PROSPERO 2020 CRD42020184232.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.