Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98–99.9%) was developed. This transformation could be carried out in the presence of up to 20 g / L−1 olefin substrate with no loss in diastereo- and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme-bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene transfer reactivity.
Engineered hemoproteins have recently emerged as promising systems for promoting asymmetric cyclopropanations, but variants featuring predictable, complementary stereoselectivity in these reactions have remained elusive. In this study, a rationally driven strategy was implemented and applied to engineer myoglobin variants capable of providing access to 1-carboxy-2-aryl-cyclopropanes with high trans-(1R,2R) selectivity and catalytic activity. The stereoselectivity of these cyclopropanation biocatalysts complements that of trans-(1S,2S)-selective variants developed here and previously. In combination with whole-cell biotransformations, these stereocomplementary biocatalysts enabled the multigram synthesis of the chiral cyclopropane core of four drugs (Tranylcypromine, Tasimelteon, Ticagrelor, TRPV1 inhibitor 24) in high yield and with excellent diastereo- and enantioselectivity (98–99.9% de; 96–99.9% ee). These biocatalytic strategies outperform currently available methods to produce these drugs.
The first example of a biocatalytic strategy for the synthesis of thioethers via an intermolecular carbene S–H insertion reaction is reported. Engineered variants of sperm whale myoglobin were found to efficiently catalyze this C–S bond forming transformation across a diverse set of aryl and alkyl mercaptan substrates and α-diazoester carbene donors, providing high conversions (60–99%) and high numbers of catalytic turnovers (1,100–5,400). Furthermore, the enantioselectivity of these biocatalysts could be tuned through mutation of amino acid residues within the distal pocket of the hemoprotein, leading to myoglobin variants capable of supporting asymmetric S–H insertions with up to 49% ee. Rearrangement experiments support a mechanism involving the formation of a sulfonium ylide generated upon attack of the thiol substrate to a heme-bound carbene intermediate.
Background: Acute lower respiratory tract infections (ALRI) are the major cause of morbidity and mortality in young children worldwide. Information on viral etiology in ALRI from India is limited. The aim of the present study was to develop a simple, sensitive, specific and cost effective multiplex PCR (mPCR) assay without post PCR hybridization or nested PCR steps for the detection of respiratory syncytial virus (RSV), influenza viruses, parainfluenza viruses (PIV1-3) and human metapneumovirus (hMPV). Nasopharyngeal aspirates (NPAs) were collected from children with ALRI ≤ 5 years of age. The sensitivity and specificity of mPCR was compared to virus isolation by centrifugation enhanced culture (CEC) followed by indirect immunofluorescence (IIF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.