SUMMARY
Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled, due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.
Highlights d De novo synthesized glycogen accumulates in the nucleus of non-small cell lung cancers d Nuclear glycogen provides a carbon pool for histone acetylation d Nuclear glycogenolysis is dependent on translocation of glycogen phosphorylase d Glycogen phosphorylase translocation is regulated by the E3 ubiquitin ligase malin
Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, RAF-1. Depletion of HUWE1 abolishes RAF-1 ubiquitination, with corresponding changes in ERK1/2 pathway activity occurring. Our results indicate that the HUWE1-mediated ubiquitination of Shoc2 is the switch that regulates the transition from an active to an inactive state of the RAF-1 kinase. Taken together, our results demonstrate that HUWE1 is a novel player involved in regulating ERK1/2 signal transmission through the Shoc2 scaffold complex.
Aim: To explore the anticancer activity of a novel BRD4 protein degrader ARV-825 (ARV) and its nanoformulation development (ARV-NP) for treatment of pancreatic cancer. Materials & methods: ARV-NP were prepared using nanoprecipitation method and characterized for their physicochemical properties and various anticancer cell culture assays. Results: ARV-NP (89.63 ± 16.39 nm) demonstrated good physical stability, negligible hemolysis and improved half-life of ARV. ARV-NP showed significant cytotoxicity, apoptosis and anticlonogenic effect in pancreatic cancer cells. Significant downregulation of target proteins BRD4, c-Myc, Bcl-2 and upregulation of apoptotic marker cleaved caspase-3 was observed. Most importantly, ARV-NP treatment significantly inhibited the cell viability of 3D tumor spheroids of pancreatic cancer. Conclusion: ARV-NP represents a novel therapeutic strategy for pancreatic cancer.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl(2), BSO, or MnCl(2) plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl(2) or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.