The design of a water quality monitoring network (WQMN) is a complicated decision-making process because each sampling involves high installation, operational, and maintenance costs. Therefore, data with the highest information content should be collected. The effect of seasonal variation in point and diffuse pollution loadings on river water quality may have a significant impact on the optimal selection of sampling locations, but this possible effect has never been addressed in the evaluation and design of monitoring networks. The present study proposes a systematic approach for siting an optimal number and location of river water quality sampling stations based on seasonal or monsoonal variations in both point and diffuse pollution loadings. The proposed approach conceptualizes water quality monitoring as a two-stage process; the first stage of which is to consider all potential water quality sampling sites, selected based on the existing guidelines or frameworks, and the locations of both point and diffuse pollution sources. The monitoring at all sampling sites thus identified should be continued for an adequate period of time to account for the effect of the monsoon season. In the second stage, the monitoring network is then designed separately for monsoon and non-monsoon periods by optimizing the number and locations of sampling sites, using a modified Sanders approach. The impacts of human interventions on the design of the sampling net are quantified geospatially by estimating diffuse pollution loads and verified with land use map. To demonstrate the proposed methodology, the Kali River basin in the western Uttar Pradesh state of India was selected as a study area. The final design suggests consequential pre- and post-monsoonal changes in the location and priority of water quality monitoring stations based on the seasonal variation of point and diffuse pollution loadings.
The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.