SummaryPlasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
The ever-increasing availability of transcriptomic and metabolomic data can be used to deeply analyze and make ever-expanding predictions about biological processes, as changes in the reaction fluxes through genome-wide pathways can now be tracked. Currently, constraint-based metabolic modeling approaches, such as flux balance analysis (FBA), can quantify metabolic fluxes and make steady-state flux predictions on a genome-wide scale using optimization principles. However, relating the differential gene expression or differential metabolite abundances in different physiological states to the differential flux profiles remains a challenge. Here we present a novel method, named REMI ( R elative E xpression and M etabolomic I ntegrations), that employs genome-scale metabolic models (GEMs) to translate differential gene expression and metabolite abundance data obtained through genetic or environmental perturbations into differential fluxes to analyze the altered physiology for any given pair of conditions. REMI allows for gene-expression, metabolite abundance, and thermodynamic data to be integrated into a single framework, then uses optimization principles to maximize the consistency between the differential gene-expression levels and metabolite abundance data and the estimated differential fluxes and thermodynamic constraints. We applied REMI to integrate into the Escherichia coli GEM publicly available sets of expression and metabolomic data obtained from two independent studies and under wide-ranging conditions. The differential flux distributions obtained from REMI corresponding to the various perturbations better agreed with the measured fluxomic data, and thus better reflected the different physiological states, than a traditional model. Compared to the similar alternative method that provides one solution from the solution space, REMI was able to enumerate several alternative flux profiles using a mixed-integer linear programming approach. Using this important advantage, we performed a high-frequency analysis of common genes and their associated reactions in the obtained alternative solutions and identified the most commonly regulated genes across any two given conditions. We illustrate that this new implementation provides more robust and biologically relevant results for a better understanding of the system physiology.
Non-alcoholic fatty liver disease (NAFLD) is a consequence of sedentary life style and high fat diets with an estimated prevalence of about 30% in western countries. It is associated with insulin resistance, obesity, glucose intolerance and drug toxicity. Additionally, polymorphisms within, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate with NAFLD. Several studies have already investigated later stages of the disease. This study explores the early steatosis stage of NAFLD with the aim of identifying molecular mechanisms underlying the etiology of NAFLD. We analyzed liver biopsies and serum samples from patients with high- and low-grade steatosis (also pre-disease states) employing transcriptomics, ELISA-based serum protein analyses and metabolomics. Here, we provide a detailed description of the various related datasets produced in the course of this study. These datasets may help other researchers find new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.