BackgroundPD-1 and CTLA-4 inhibitors are associated with several adverse events including a spectrum of immune-related adverse effects (irAEs). Neurologic irAEs are uncommon occurrences with varied presentations. We describe two separate cases of ipilimumab associated meningoencephalomyelitis and demyelinating polyneuropathy with unusual presentations.Case presentationTwo melanoma patients were treated with ipilimumab in the adjuvant setting. The first patient developed a meningoencephalitis following 3 doses of ipilimumab. MRI imaging of the brain confirmed leptomeningeal enhancement although cerebrospinal fluid (CSF) analyses were negative for malignant cells consistent with meningoencephalomyelitis. Although she initially improved following treatment with steroids and intravenous immunoglobulin, she subsequently relapsed. She was successfully treated with infliximab and made a complete neurological recovery. A second patient developed progressive lower extremity weakness following two doses of ipilimumab. MRI imaging of the spine confirmed diffuse nerve root enhancement consistent with acute inflammatory demyelinating polyneuropathy (AIDP). He was treated with high dose steroids with resolution of neurological symptoms. Both patients remain disease free.ConclusionsNeurological irAEs are uncommon adverse events in the context of CTLA-4 and/or PD-1 inhibitor therapy. Care must be taken to distinguish these from leptomeningeal disease. Early recognition of neurological irAEs is critical for the initiation of specific anti-inflammatory agents to prevent and potentially reverse neurological sequelae.
Metastatic disease to the brain is a frequent manifestation of melanoma and is associated with significant morbidity, mortality, and poor prognosis. Surgery and stereotactic radiosurgery provide local control but less frequently affect the overall outcome of melanoma brain metastases (MBM). The role of systemic therapies for active brain lesions has been largely under-investigated and those patients are excluded from the vast majority of clinical trials. The advent of active systemic therapy has revolutionized the care of melanoma patients but this benefit has not been systematically translated into intracranial activity. In this article, we review the biology and clinical outcomes of patients with MBM, the evidence supporting the use of radiation, surgery, and systemic therapy in MBM. Prospective studies that included patients with active MBM have shown clinical intracranial activity that parallels systemic activity and support the inclusion of patients with active MBM in clinical trials involving novel agents and combination therapies.
Mutations in RAS occur in 30–50% of metastatic colorectal carcinomas (mCRCs) and correlate with resistance to anti-EGFR therapy. Consequently, mCRC biomarker guidelines state RAS mutational testing should be performed when considering EGFR inhibitor treatment. However, a small subset of mCRCs are reported to harbor RAS amplification. In order to elucidate the clinicopathologic features and anti-EGFR treatment response associated with RAS amplification, we retrospectively reviewed a large cohort of mCRC patients that underwent targeted next-generation sequencing and copy number analysis for KRAS , NRAS , HRAS , BRAF and PIK3CA . Molecular testing was performed on 1,286 consecutive mCRC from 1,271 patients as part of routine clinical care, and results were correlated with clinicopathologic findings, mismatch repair (MMR) status and follow-up. RAS amplification was detected in 22 (2%) mCRCs and included: KRAS , NRAS and HRAS for 15, 5 and 2 cases, respectively (6 to 21 gene copies). Patients with a KRAS -amplified mCRC were more likely to report a history of inflammatory bowel disease (p < 0.001). In contrast, mutations in KRAS were associated with older patient age, right-sided colonic origin, low-grade differentiation, mucinous histology and MMR proficiency (p ≤ 0.017). Four patients with a KRAS -amplified mCRC and no concomitant RAS / BRAF / PIK3CA mutations received EGFR inhibitor-based therapy, and none demonstrated a clinicoradiographic response. The therapeutic impact of RAS amplification was further evaluated using a separate, multi-institutional cohort of 23 patients. Eight of 23 patients with KRAS -amplified mCRC received anti-EGFR therapy and all 8 patients exhibited disease progression on treatment. Although the number of KRAS -amplified mCRCs is limited, our data suggests the clinicopathologic features associated with mCRC harboring a KRAS amplification are distinct from those associated with a KRAS mutation. However, both alterations seem to confer EGFR inhibitor resistance and, therefore, RAS testing to include copy number analyses may be of consideration in the treatment of mCRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.