We analyze an ensemble of organophosphorus compounds to form an unbiased characterization of the information encoded in their X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectra (VtC-XES). Data-driven emergence of chemical classes via unsupervised machine learning, specifically cluster analysis in the Uniform Manifold Approximation and Projection (UMAP) embedding, finds spectral sensitivity to coordination, oxidation, aromaticity, intramolecular hydrogen bonding, and ligand identity. Subsequently, we implement supervised machine learning via Gaussian process classifiers to identify confidence in predictions that match our initial qualitative assessments of clustering. The results further support the benefit of utilizing unsupervised machine learning as a precursor to supervised machine learning, which we term Unsupervised Validation of Classes (UVC), a result that goes beyond the present case of X-ray spectroscopies.
We analyze an ensemble of organophosphorus compounds to form an unbiased characterization of the information encoded in their X-ray absorption near edge structure (XANES) and valence-to-core X-ray emission spectra (VtC-XES). Data-driven emergence of chemical classes via unsupervised machine learning, specifically cluster analysis in the Uniform Manifold Approximation and Projection (UMAP) embedding, finds spectral sensitivity to coordination, oxidation, aromaticity, intramolecular hydrogen bonding, and ligand identity. Subsequently, we implement supervised machine learning via Gaussian Process classifiers to identify confidence in predictions which match our initial qualitative assessments of clustering. The results further support the benefit of utilizing unsupervised machine learning as a precursor to supervised machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.