A series of hydroxamates was prepared from an aminoproline scaffold and tested for efficacy as matrix metalloproteinase (MMP) inhibitors. Detailed SAR for the series is reported for five enzymes within the MMP family, and a number of inhibitors, such as compound 47, display broad-spectrum activity with sub-nanomolar potency for some enzymes. Modifications of the P1' portion of the molecule played a key role in affecting both potency and selectivity within the MMP family. Longer-chain aliphatic substituents in this region of the molecule tended to increase potency for MMP-3 and decrease potency for MMP-1, as exemplified by compounds 48-50, while aromatic substituents, as in compound 52, generated broad-spectrum inhibition. The data is rationalized based upon X-ray crystal data which is also presented. While the in vitro peroral absorption seemed to be less predictable, it tended to decrease with longer and more hydrophilic substituents. Finally, a rat model of osteoarthritis was used to evaluate the efficacy of these compounds, and a direct link was established between their pharmacokinetics and their in vivo efficacy.
A series of carboxylic acids were prepared from a propargylglycine scaffold and tested for efficacy as matrix metalloproteinase (MMP) inhibitors. Detailed SAR for the series is reported for four enzymes within the MMP family. The inhibitors were typically potent against collagenase-3 (MMP-13) and gelatinase A (MMP-2), while they spared collagenase-1 (MMP-1) and only moderately inhibited stromelysin (MMP-3). Compound 40 represents a typical inhibition profile of a compound with reasonable potency. Introduction of polar groups was required in order to generate inhibitors with acceptable water solubility, and this often resulted in a loss of potency as in compound 63. High serum protein binding proved to be a difficult hurdle with many compounds such as 48 showing >99% binding. Some compounds such as 64 displayed approximately 90% binding, but no reliable method was discovered for designing molecules with low protein binding. Finally, selected data regarding the pharmacokinetic behavior of these compounds is presented.
In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.
Carboxylic acid-based MMPIs were identified that had superior in vivo plasma exposure compared to a hydroxamic acid inhibitor but lacked in vivo efficacy in the rat iodoacetate model of cartilage degeneration. The lack of in vivo efficacy of the carboxylic acid based MMPIs were probably due to their lack of cartilage penetration which was related to their physicochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.