Nitric oxide has pronounced effects on cellular functions normally associated with the cytoskeleton, including cell motility, shape, contraction, and mitosis. Protein S-nitrosylation, the covalent addition of a NO group to a cysteine sulfur, is a signaling pathway for nitric oxide that acts in parallel to cyclic guanosine monophosphate (cGMP), but is poorly studied compared to the latter. There is growing evidence that S-nitrosylation of cytoskeletal proteins selectively alters their function. We review that evidence, and find that S-nitrosylation of cytoskeletal targets has complementary but distinct effects to cyclic-GMP in motile and contractile cells-promoting cell migration, and biasing muscle contraction toward relaxation. However, the effects of S-nitrosylation on a host of cytoskeletal proteins and functions remains to be explored. K E Y W O R D Sactin, adherens junctions, focal adhesions, microtubules, myosin, nitric oxide
The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of retina pigment epithelial (RPE) cells is phagocytosis of damaged photoreceptor outer segments (POS). Here, we identify RPE cells as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 mRNA and insulin protein are produced by RPE cells, and that this production correlates with RPE phagocytosis of POS. Genetic deletion of the phagocytic receptor CD36 ('loss of function') reduces Ins2, while increasing the phagocytic receptor MerTK levels ('gain of function') increases Ins2 production in male mice. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
Recently, we developed a three-compartment dual-output model that incorporates spillover (SP) and partial volume (PV) corrections to simultaneously estimate the kinetic parameters and model-corrected blood input function (MCIF) from dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) images of mouse heart in vivo. In this study, we further optimized this model and utilized the estimated MCIF to compute cerebral FDG uptake rates, Ki, from dynamic total-body FDG PET images of control Wistar–Kyoto (WKY) rats and compared to those derived from arterial blood sampling in vivo. Dynamic FDG PET scans of WKY rats (n = 5), fasted for 6 h, were performed using the Albira Si Trimodal PET/SPECT/CT imager for 60 min. Arterial blood samples were collected for the entire imaging duration and then fitted to a seven-parameter function. The 60-min list mode PET data, corrected for attenuation, scatter, randoms, and decay, were reconstructed into 23 time bins. A 15-parameter dual-output model with SP and PV corrections was optimized with two cost functions to compute MCIF. A four-parameter compartment model was then used to compute cerebral Ki. The computed area under the curve (AUC) and Ki were compared to that derived from arterial blood samples. Experimental and computed AUCs were 1,893.53 ± 195.39 kBq min/cc and 1,792.65 ± 155.84 kBq min/cc, respectively (p = 0.76). Bland–Altman analysis of experimental vs. computed Ki for 35 cerebral regions in WKY rats revealed a mean difference of 0.0029 min−1 (~13.5%). Direct (AUC) and indirect (Ki) comparisons of model computations with arterial blood sampling were performed in WKY rats. AUC and the downstream cerebral FDG uptake rates compared well with that obtained using arterial blood samples. Experimental vs. computed cerebral Ki for the four super regions including cerebellum, frontal cortex, hippocampus, and striatum indicated no significant differences.
IntroductionIn concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation.MethodsEight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3.ResultsFor Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3.DiscussionOur study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.