Sweetpotato yield depends on a change in the developmental fate of adventitious roots into storage-roots. The mechanisms underlying this developmental switch are still unclear. We examined the hypothesis claiming that regulation of root lignification determines storage-root formation. We show that application of the plant hormone gibberellin increased stem elongation and root gibberellin levels, while having inhibitory effects on root system parameters, decreasing lateral root number and length, and significantly reducing storage-root number and diameter. Furthermore, gibberellin enhanced root xylem development, caused increased lignin deposition, and, at the same time, decreased root starch accumulation. In accordance with these developmental effects, gibberellin application upregulated expression levels of sweetpotato orthologues of Arabidopsis vascular development regulators (IbNA075, IbVND7, and IbSND2) and of lignin biosynthesis genes (IbPAL, IbC4H, Ib4CL, IbCCoAOMT, and IbCAD), while downregulating starch biosynthesis genes (IbAGPase and IbGBSS) in the roots. Interestingly, gibberellin downregulated root expression levels of orthologues of the Arabidopsis BREVIPEDICELLUS transcription factor (IbKN2 and IbKN3), regulator of meristem maintenance. The results substantiate our hypothesis and mark gibberellin as an important player in regulation of sweetpotato root development, suggesting that increased fiber formation and lignification inhibit storage-root formation and yield. Taken together, our findings provide insight into the mechanisms underlying sweetpotato storage-root formation and provide a valuable database of genes for further research.
Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher ( p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (C frac 1 ) by 21% followed by labile fraction (C frac 2 ) (16%), non–labile fraction (C frac 4 ) (13%) and less–labile fraction (C frac 3 ) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher ( p < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased ( p < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability.
BackgroundCold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of ‘Oded’ (high tolerant) and ‘Hermoza’ (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress.ResultsWe identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in ‘Hermoza’ and the progeny pools, but not in the cold resistant ‘Oded’. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life.ConclusionsOur data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1395-6) contains supplementary material, which is available to authorized users.
Chloroperoxidase from Musa paradisiaca stem juice has been purified to homogeneity using a concentration obtained by ultrafiltration and anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The purified enzyme gave a single protein band in SDS-PAGE analysis corresponding to molecular mass of 43 kDa. The native PAGE analysis result has also given a single protein band, confirming the purity of the enzyme. The purified enzyme was chlorinated and brominated with monochlorodimedone, the substrate used for measuring the halogenating activity of chloroperoxidases. The K m and k cat values using monochlorodimedone as the substrate were 20 μM and 1.64 s −1 , respectively, giving a k cat /K m value of 8.2 × 10 4 M −1 s −1 . The pH and temperature optima of the chlorinating activity were 3.0 and 25 • C, respectively. The K m values for the peroxidase activity using pyragallol and H 2 O 2 as the variable substrates were 89 and 120 μM, respectively. The pH and temperature optima of the peroxidase activity using pyrogalllol as the substrate were the same as the pH and temperature optima of the halogenating activity. The peroxidase activity of the enzyme is competitively inhibited by sodium azide, indicating that it is a hemeperoxidase different from nonheme peroxidases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.