The adsorptive removal of dyes from industrial wastewater using commercially available adsorbents is not significantly efficient. Metal–organic frameworks (MOFs) offer outstanding properties which can boost the separation performance over current commercial adsorbents and hence, these materials represent a milestone in improving treatment methods for dye removal from water. Accordingly, in this paper, the recent studies in the modification of MOF structures in dye removal from the aquatic environment have been discussed. This study aims to elaborate on the synthetic strategies applied to improve the adsorption efficiency and to discuss the major adsorption mechanisms as well as the most influential parameters in the adsorptive removal of dyes using MOFs. More particularly, the advanced separation performance of MOF-based adsorbents will be comprehensively explained. The introduction of various functional groups and nanomaterials, such as amine functional groups, magnetic nanoparticles, and carbon-based materials such as graphene oxide and CNT, onto the MOFs can alter the removal efficiency of MOF-based adsorbents through enhancing the water stability, dispersion in water, interactions between the MOF structure and the contaminant, and the adsorption capacity. Finally, we summarize the challenges experienced by MOF-based materials for dye removal from water and propose future research outlooks to be considered.
The number of synthetic strategies used to functionalize MOFs with polymers is rapidly growing; this stems from the knowledge that non-native polymeric guests can significantly boost MOF performance in a number of desirable applications. The current work presents a scalable and solid-state method for MOF/polymer composite production. This simple method constitutes mixing a MOF powder, namely, Fe-BTC (BTC = 1,3,5-benzenetricarboxylate), with a biomass-derived solid monomer, 5-hydroxymethylfurfural (HMF), and subsequently heating the solids; the latter promotes both solid-state diffusion of HMF into the MOF and the formation of polymeric humin species with a high density of accessible hydroxyl functionality within the MOF pore. The resulting composite, Fe-BTC/humin, was found to selectively extract Ag + ions from laundry wastewater. Subsequent reduction of the Ag + species yields a novel catalyst, Fe-BTC/humin/Ag, that is able to drive the organic transformation of cinnamaldehyde in a highly selective manner. Moreover, the catalyst exhibited recyclability up to five cycles, which is in contrast to the Fe-BTC/Ag catalyst without the humin-based polymer. It is envisioned that MOF/polymer composites that are able to selectively extract precious metals from liquid waste streams can be used for the future production of sustainable catalysts; this work was aimed at demonstrating a proof of concept in this regard. Moreover, this study brings more understanding of the impact that MOFs can have on polymer functionalities. Understanding the polymer structure and how it can be manipulated will help us realize the high degree of future potential of this distinct class of composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.