We describe a subdivision algorithm for isolating the complex roots of a polynomial F ∈ C [x]. Given an oracle that provides approximations of each of the coefficients of F to any absolute error bound and given an arbitrary square B in the complex plane containing only simple roots of F , our algorithm returns disjoint isolating disks for the roots of F in B.Our complexity analysis bounds the absolute error to which the coefficients of F have to be provided, the total number of iterations, and the overall bit complexity. It further shows that the complexity of our algorithm is controlled by the geometry of the roots in a near neighborhood of the input square B, namely, the number of roots, their absolute values and pairwise distances. The number of subdivision steps is near-optimal. For the benchmark problem, namely, to isolate all the roots of a polynomial of degree n with integer coefficients of bit size less than τ , our algorithm needsÕ(n 3 + n 2 τ ) bit operations, which is comparable to the record bound of Pan (2002). It is the first time that such a bound has been achieved using subdivision methods, and independent of divide-and-conquer techniques such as Schönhage's splitting circle technique.Our algorithm uses the quadtree construction of Weyl (1924) with two key ingredients: using Pellet's Theorem (1881) combined with Graeffe iteration, we derive a "soft-test" to count the number of roots in a disk. Using Schröder's modified Newton operator combined with bisection, in a form inspired by the quadratic interval method from Abbot (2006), we achieve quadratic convergence towards root clusters. Relative to the divide-conquer algorithms, our algorithm is quite simple with the potential of being practical. This paper is self-contained: we provide pseudo-code for all subroutines used by our algorithm.
We give a unified ("basis free") framework for the Descartes method for real root isolation of square-free real polynomials. This framework encompasses the usual Descartes' rule of sign method for polynomials in the power basis as well as its analog in the Bernstein basis. We then give a new bound on the size of the recursion tree in the Descartes method for polynomials with real coefficients. Applied to polynomials A(X) = P n i=0 aiX i with integer coefficients |ai| < 2 L , this yields a bound of O(n(L + log n)) on the size of recursion trees. We show that this bound is tight for L = Ω(log n), and we use it to derive the best known bit complexity bound for the integer case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.