Ascorbic acid (AscH2) is one of the most important vitamins found in the human diet, with many biological functions including antioxidant, chelating, and coenzyme activities. Ascorbic acid is also widely used in medical practice especially for increasing iron absorption and as an adjuvant therapeutic in iron chelation therapy, but its mode of action and implications in iron metabolism and toxicity are not yet clear. In this study, we used UV–Vis spectrophotometry, NMR spectroscopy, and EPR spin trapping spectroscopy to investigate the antioxidant/pro-oxidant effects of ascorbic acid in reactions involving iron and the iron chelator deferiprone (L1). The experiments were carried out in a weak acidic (pH from 3 to 5) and neutral (pH 7.4) medium. Ascorbic acid exhibits predominantly pro-oxidant activity by reducing Fe3+ to Fe2+, followed by the formation of dehydroascorbic acid. As a result, ascorbic acid accelerates the redox cycle Fe3+ ↔ Fe2+ in the Fenton reaction, which leads to a significant increase in the yield of toxic hydroxyl radicals. The analysis of the experimental data suggests that despite a much lower stability constant of the iron–ascorbate complex compared to the FeL13 complex, ascorbic acid at high concentrations is able to substitute L1 in the FeL13 chelate complex resulting in the formation of mixed L12AscFe complex. This mixed chelate complex is redox stable at neutral pH = 7.4, but decomposes at pH = 4–5 during several minutes at sub-millimolar concentrations of ascorbic acid. The proposed mechanisms play a significant role in understanding the mechanism of action, pharmacological, therapeutic, and toxic effects of the interaction of ascorbic acid, iron, and L1.
Iron and ascorbic acid (vitamin C) are essential nutrients for the normal growth and development of humans, and their deficiency can result in serious diseases. Their interaction is of nutritional, physiological, pharmacological and toxicological interest, with major implications in health and disease. Millions of people are using pharmaceutical and nutraceutical preparations of these two nutrients, including ferrous ascorbate for the treatment of iron deficiency anaemia and ascorbate combination with deferoxamine for increasing iron excretion in iron overload. The main function and use of vitamin C is its antioxidant activity against reactive oxygen species, which are implicated in many diseases of free radical pathology, including biomolecular-, cellular- and tissue damage-related diseases, as well as cancer and ageing. Ascorbic acid and its metabolites, including the ascorbate anion and oxalate, have metal binding capacity and bind iron, copper and other metals. The biological roles of ascorbate as a vitamin are affected by metal complexation, in particular following binding with iron and copper. Ascorbate forms a complex with Fe3+ followed by reduction to Fe2+, which may potentiate free radical production. The biological and clinical activities of iron, ascorbate and the ascorbate–iron complex can also be affected by many nutrients and pharmaceutical preparations. Optimal therapeutic strategies of improved efficacy and lower toxicity could be designed for the use of ascorbate, iron and the iron–ascorbate complex in different clinical conditions based on their absorption, distribution, metabolism, excretion, toxicity (ADMET), pharmacokinetic, redox and other properties. Similar strategies could also be designed in relation to their interactions with food components and pharmaceuticals, as well as in relation to other aspects concerning personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.