There are international activities and on-going initiatives, particularly at the European level, to define what Positive Energy Districts should be, as the driving concept for the urban transition to a sustainable future. The first objective of the paper is to contribute to the on-going and lively debate about the definition of the notion of Sustainable Plus Energy Neighbourhood (SPEN), which highlights the multiple dimensions when talking about sustainability in districts moving beyond the traditional and strict building energy assessment. Based on a holistic methodology which ensures the consideration of the multidimensional nature and goals of SPEN, the paper outlines an evaluation framework. The evaluation framework defines the key performance indicators distributed in five categories that consider energy and power performance, GHG emissions, indoor environmental quality, smartness, flexibility, life cycle costs and social sustainability. This framework is designed to be implemented during integrated design processes aiming to select design options for a neighbourhood as well within during the operational phase for monitoring its performance. Further work will include the implementation and validation of the framework in four real-life positive energy neighbourhoods in different climate zones of Europe as part of syn.ikia H2020 project.
Mainstreaming energy communities has been one of the main challenges in the low-carbon transition of cities. In this sense, urban building energy modelling (UBEM) has an untapped role in enabling energy communities, as simulations on urban models provide evidence-based decision support to reduce risks, engage, motivate and guide actors, assert wider policy goals and regulatory requirements. This accelerating role and the potential of UBEM is not sufficiently understood, as research into energy community focuses on its barriers and impacts, while the research of UBEM is mainly technologically oriented. This review takes a sociotechnical approach to explore whether UBEM is a technological trigger for energy communities, furthering the conceptual framework of transition management. factors influencing energy community progression in different use-cases and stages of their lifecycle are compiled to assess the affordances of distinct capabilities of prevalent UBEM tools. The study provides a guide for energy community planners to UBEM. It matches different tool capabilities to the various stages of the project lifecycle for the different use-cases, equipping them with the means to accelerate the low-carbon transition of cities from the bottom-up. Finally, the study defines a development trajectory oriented towards application in urban sustainability to a rather new UBEM field.
Participation has been touted as a critical instrument for both citizen empowerment and responsibility-sharing in sustainability. In architecture, participation allows for the progression of green building to sustainable habitation that integrates environmental, economic, and social dimensions. However, participation in practice rarely delegates meaningful decisions to marginalized groups and is mostly a one-sided process. This study seeks to investigate which factors of the participatory method afford both empowerment and behavioral change to a sustainable lifestyle in low-income groups. To do so, a case study of designing a social housing estate in Hungary is presented, where participatory design was used to codevelop a building that considers and adjusts to the sustainable lifestyle envisioned by the future residents. A coding engine based on the concept of pattern languages was developed that places conditions and experience of everyday activities at the center of design, translating them to spatial features. As a result, a focus group of social housing tenants and cohousing experts were able to define explicit shared spaces, allocate square meters to them, and articulate legible design criteria. Of the early-stage design decisions, 45% were made with or by the participants, and the bilateral process made it possible to convince the tenants to adopt a more sustainable habitation format.
Cities have to face the challenges of steady population growth, the related increase in energy and resource demands, intensifying climate change impacts and rapid technological development. To handle these complex challenges and promote sustainable development, the smart city approach – data-driven planning based on emergent ICT technologies – has been gaining prevalence. However, the lack of shared standards, frameworks, and evidence-based decision-support tools limit the collaboration among smart city actors and the utility of the mainly business-driven technical solutions. This study explores the scalability of indicator systems into a shared framework for smart and sustainable cities by practice-based research during the development of the SmartCEPS project. SmartCEPS is an assessment system and maturity model based on key performance indicators (KPIs) for small- and medium-size European cities. In its architecture, indicators are organized in a causal network capable of capturing synergies, co-benefits and payoffs of decisions; structural metadata provides the means for a gradual customisation of the system; and finally, the indicator pool is scalable by complexity, ensuring different levels of detail in assessments. The study concludes that gradual customisation, network organisation, and open-ended scalability are the proxies for developing decision-support instruments from KPIs.
Energy Transition (ET) needs actors to perform independent actions on multiple levels of governance. These actors may need to write and read their data, and at the same time they want to protect their data from unauthorized access. This is particularly the case for positive energy districts (PED), a growing trend in the EU that requires actors to perform, write and read operations on a neighborhood scale where governance competences are typically absent. This paper presents a decentralized privacy-aware data management framework that enables actors to store, read, and modify data in PEDs. Our framework design integrates blockchain with a Distributed Hash Table (DHT), role-based access control, ring signature, and different encryption techniques. The proposed framework stores encrypted data on the DHT, and metadata and hash key are sent to the blockchain, which allows the data owner to keep track of their data. The proposed framework components handle multi-level data access in PEDs and enable data security at run-time. Moreover, we show security and privacy analysis and performance evaluation in time overhead. The results show that the proposed solution is effective, secure, and scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.