Digital image inpainting refers to techniques used to reconstruct a damaged or incomplete image by exploiting available image information. The main goal of this work is to perform the image inpainting process from a set of sparsely distributed image samples with the Smoothed Particle Hydrodynamics (SPH) technique. As, in its naive formulation, the SPH technique is not even capable of reproducing constant functions, we modify the approach to obtain an approximation which can reproduce constant and linear functions. Furthermore, we examine the use of Voronoi tessellation for defining the necessary parameters in the SPH method as well as selecting optimally located image samples. In addition to this spatial optimization, optimization of data values is also implemented in order to further improve the results. Apart from a traditional Gaussian smoothing kernel, we assess the performance of other kernels on both random and spatially optimized masks. Since the use of isotropic smoothing kernels is not optimal in the presence of objects with a clear preferred orientation in the image, we also examine anisotropic smoothing kernels. Our final algorithm can compete with well-performing sparse inpainting techniques based on homogeneous or anisotropic diffusion processes as well as with exemplar-based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.