Earthquakes with comparatively low magnitudes can lead to serious damage to non‐structural components of historical masonry buildings, such as architectural facade elements. In order to assess the vulnerability of non‐structural components, the horizontal floor acceleration is used. This depends on the dynamic characteristics of the building, the ground acceleration and dissipative effects. In the present article comprehensive probabilistic FE time history analyses with different hazard levels have been carried out for selected masonry structures. In order to take induced non‐linearities into account, a macroscopic material model for historic masonry was calibrated and applied. It was shown that the chosen methodology enables the determination of the distribution of floor acceleration over the building height for historic masonry structures. In addition, due to the detailed scope, a robust comparison with the simplified design methods is possible. Finally, the applicability of the simplified design approach according to EN 1998‐1 [1] is discussed for the investigated case.
A large part of buildings in Central European cities like Vienna was built in the Gründerzeit period between about 1840 and 1918 [1]. These buildings were constructed according to traditional rules. Current urban development requires historic buildings to be structurally adapted, which requires retroactive analysis of the masonry walls; in Austria according to ÖNORM EN 1998-3 [2] and ÖNORM EN 1996-3 (EC 6) [3]. Here, special focus is on the load transfer of horizontal earthquake loads, i. e. the shear strength of masonry walls. This paper describes the verification of historic masonry in detail and discusses individual components. Initial shear strength, load-influenced friction and the length of the compressed part of the wall are first determined using results from experimental testing and relevant literature and then compared to the approaches in EC 6. Based on this analysis, recommendations are provided to make theoretical approaches more realistic.
The investigations [1] demonstrate that the two‐shearfield test is a suitable method for the determination of the shear capacity of masonry. The testing equipment is mounted directly on the wall in order to retain realistic boundary conditions like stiffness, load and prior damage. The behaviour factor q and the capacity curves of certain masonry walls can be directly obtained from the experimental results and realistic material behaviour in earthquake design can be represented. In particular, existing masonry can be assessed realistically with methods like the response spectrum, the push‐over and the capacity spectrum by using the two‐shearfield test.
Das gebaute Erbe unterliegt einem ständigen Wandel. In Wien sowie in zahlreichen anderen mitteleuropäischen Städten sind mehr als 25 % aller Bestandsobjekte älter als hundert Jahre. Als Voraussetzung für strukturelle Änderungen an diesen Objekten ist in vielen Fällen eine Nachbemessung der bestehenden Tragstruktur unumgänglich. Durch das risikobasierte Bemessungskonzept der ÖNORM B 1998–3 für bestehende Gebäude wurde in Österreich ein ausgeprägtes Bewusstsein für eine nachträgliche erdbebensichere Auslegung von Gründerzeithäusern geschaffen. Die gesonderte Betrachtung sekundärer Strukturen, wie beispielsweise historische Zierelemente, unter seismischer Einwirkung wird jedoch meist außer Acht gelassen. Bei geschichtsträchtigen Erdbeben hat sich allerdings gezeigt, dass solche sekundären Strukturen einen wesentlichen Anteil der Gebäudeschäden ausmachen und im Versagensfall eine signifikante Gefährdung von Personen darstellen. Da eingehende Untersuchungen sekundärer Elemente (z. B. mithilfe von Zeitverlaufsberechnungen) in der praktischen Umsetzung mit einem unverhältnismäßigen Aufwand verbunden sind, wird im ersten Schritt des vorliegenden Beitrags der State of the Art von einfach anzuwendenden quasistatischen Verfahren vorgestellt. Im Anschluss werden länderspezifische Bemessungsansätze analytisch gegenübergestellt und die Anwendbarkeit solcher Ansätze für historische Bestandsgebäude diskutiert. Abschließend wird eine praxistaugliche Methode zur vereinfachten Bewertung der für zentraleuropäische Städte typischen und das Stadtbild prägenden Zierelemente vorgestellt.
The eccentricity charts presented in this paper have been developed on the basis of experimental investigations in order to enable a realistic calculation method of the ultimate load of flat brickwork vaulted floors with standard structural software. The vault is modelled as a three‐hinged arch with eccentric hinges in order to thus represent the non‐linear behaviour of the load‐bearing structure. Furthermore the hinge configuration, which is adapted with the eccentricity charts, takes into account the degree of plastification of historic masonry, existing load‐induced damage, any displacement of the abutments and the location of the thrust line. Two examples are described to explain the applicability of this method, and the results are compared with results from other modelling approaches. This makes clear that the eccentricity charts enable realistic structural analysis of flat brickwork vaults with various geometries and with highly efficient use of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.