Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori−Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In this Review, we describe some of the recent studies in this regard. We focus on the construction and simulation of dynamically consistent systematic CG models based on the GLE, both in the simple Markovian limit and the non-Markovian case. Some recent studies of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while highlighting the major challenges and possible future directions.
In a previous study we proposed a method to parameterize isotropic, configuration independent, non-Markovian generalized Langevin thermostats to achieve dynamic consistency in coarse-grained models. In the current study, by applying the same strategy, we develop coarse-grained implicit solvent models for the continuous Asakura-Oosawa model, which under certain conditions allows to develop very accurate coarse-grained potentials. By developing coarse-grained models for different reference systems with varying parameters, we test the broader applicability of the proposed procedure and demonstrate the relevance of accurate coarse-grained potentials in bottom-up derived dissipative models. We study how different system parameters affect the dynamic representability of the coarse-grained models. In particular we find that the quality of the coarse-grained potential is crucial to correctly model the backscattering effect due to collisions on the coarse-grained scale. In the dynamics of colloid suspensions the hydrodynamic interactions affect the long-time scale dynamics by solvent mediated momentum transfer. These interactions are not explicitly modeled in the presented coarse-grained models, which poses some limitations to the proposed coarse-graining scheme. The Asakura-Oosawa model allows a tuning of system parameters, to gain an improved understanding of these limitations. We also propose three new iterative optimization schemes to fine tune the generalized Langevin thermostat to exactly match the reference velocity-autocorrelation function.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
We propose a route for parameterizing isotropic (generalized) Langevin [(G)LE] thermostats with the aim to correct the dynamics of coarse-grained (CG) models with pairwise conservative interactions. The approach is based on the Mori–Zwanzig formalism and derives the memory kernels from Q-projected time correlation functions. Bottom-up informed (GLE and LE) thermostats for a CG star-polymer melt are investigated, and it is demonstrated that the inclusion of memory in the CG simulation leads to predictions of polymer diffusion in quantitative agreement with fine-grained simulations. Interestingly, memory effects are observed in the diffusive regime. We demonstrate that previously neglected cross-correlations between the “irrelevant” and the CG degree of freedom are important and lie at the origin of shortcomings in previous CG simulations.
Molecular dynamics (MD) simulations based on coarse-grained (CG) particle models of molecular liquids generally predict accelerated dynamics and misrepresent the time scales for molecular vibrations and diffusive motions. The parametrization of Generalized Langevin Equation (GLE) thermostats based on the microscopic dynamics of the fine-grained model provides a promising route to address this issue, in conjunction with the conservative interactions of the CG model obtained with standard coarse graining methods, such as iterative Boltzmann inversion, force matching, or relative entropy minimization. We report the application of a recently introduced bottom-up dynamic coarse graining method, based on the Mori–Zwanzig formalism, which provides accurate estimates of isotropic GLE memory kernels for several CG models of liquid water. We demonstrate that, with an additional iterative optimization of the memory kernels (IOMK) for the CG water models based on a practical iterative optimization technique, the velocity autocorrelation function of liquid water can be represented very accurately within a few iterations. By considering the distinct Van Hove function, we demonstrate that, with the presented methods, an accurate representation of structural relaxation can be achieved. We consider several distinct CG potentials to study how the choice of the CG potential affects the performance of bottom-up informed and iteratively optimized models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.