We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. Furthermore, we measure micromotion and heating rates in the setup.
We present an ion trap with an integrated fiber cavity, designed for strong coupling at the level of single ions and photons. The cavity is aligned to the axis of a miniature linear Paul trap, enabling simultaneous coupling of multiple ions to the cavity field. We simulate how charges on the fiber mirrors affect the trap potential, and we test these predictions with an ion trapped in the cavity. Furthermore, we measure micromotion and heating rates in the setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.