To improve the safety in common areas of multi-storey buildings (lift halls, common corridors), it is proposed to renovate interiors of the areas. Such areas usually have no permanent ventilation. Thus, they can accumulate pathogenic microorganisms and viruses. The effective solution for reducing the danger is phytoncides plants. For successful phytodesign, an assortment of phytoncides plants of 11 species has been developed: Aspidistra elatior, Aglaonema “Silver queen”, Aglaonema “Maria”, Chlorophytum comosum, Chlorophytum capense, Dracena marginata, Monstera deliciosa, Philodendron scandens, Sansevieria triaeffieria trichelifera, Zamiaculcas zamiifolia. The offered assortment completely corresponds to climatic features of premises. For the normal growth and development of plants in the absence of natural light, three options for additional effective illumination are proposed.
Low air quality is one of the most widespread reasons for diseases of respiratory, cardiovascular, immune, and nervous systems. The work aims to improve indoor air quality using the most natural method – indoor phytoncide plants. R. Koch’s sedimentation method has been used. The rule of V. L. Omelianskyi calculated the total viable number. Phytoncide activity was estimated by tests of leaf disks in Petri dishes with evenly seeded microbes. Researches in a high school showed a very high total viable number after studies – up to 6000 CFU/cm3. Tests of leaf disks allowed ranging the commonly used indoor plants by phytoncide activity. The most active large-size plants are Citrus limon and Ficus benjamina. From small-size plants, Azalea and Fuchsia were recommended. Amaryllis and Phoenix dactylifera have the lowest phytoncide activity. Final tests of indoor air showed the possibility of decreasing the total viable number in the high school rooms 2.5-3.5 times.
In the modern conditions, energy efficiency is one of the most important world problems. One of the important factors influencing the overall energy efficiency of buildings is air distribution in rooms. Literature review shows different options of efficiency estimation of air exchange with significant limitations. Some of them have non-obvious physical meaning. Certain of them do not take into account possible room zoning. Consideration of turbulence intensity in the efficiency estimation was not found. In this work, we propose an approach to estimate the air exchange efficiency in different kind of rooms. It is a relation of minimum room demands and inlet air potentials. Additional definitions are introduced for the parameters and demands estimation. The mechanical energy of the air is used for the estimation, which includes the energy of averaged motion and turbulent pulsation. Special approach is offered for turbulence intensity computation for energy calculations. The example of efficiency estimation of air exchange in a museum room with constant air volume system of air conditioning is solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.