HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10−12). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the ‘intermediate phenotype’ nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host–pathogen interaction.DOI: http://dx.doi.org/10.7554/eLife.01123.001
The rapid evolution of drug resistance remains a major obstacle for HIV therapy. The capacity of the virus for recombination is widely believed to facilitate the evolution of drug resistance. Here, we challenge this intuitive view. We develop a population genetic model of HIV replication that incorporates the processes of mutation, cellular superinfection, and recombination. We show that cellular superinfection increases the abundance of low fitness viruses at the expense of the fittest strains due to the mixing of viral proteins during virion assembly. Moreover, we argue that whether recombination facilitates the evolution of drug resistance depends critically on how resistance mutations interact to determine viral fitness. Contrary to the commonly held belief, we find that, under the most plausible biological assumptions, recombination is expected to slow down the rate of evolution of multi-drug-resistant virus during therapy.
Objective The potential for changing HIV-1 virulence has significant implications for the AIDS epidemic, including changing HIV transmission rates, rapidity of disease progression, and timing of ART. Published data to date have provided conflicting results. Design We conducted a meta-analysis of changes in baseline CD4+ T-cell counts and set point plasma viral RNA load over time in order to establish whether summary trends are consistent with changing HIV-1 virulence. Methods We searched PubMed for studies of trends in HIV-1 prognostic markers of disease progression and supplemented findings with publications referenced in epidemiological or virulence studies. We identified 12 studies of trends in baseline CD4+ T-cell counts (21 052 total individuals), and eight studies of trends in set point viral loads (10 785 total individuals), spanning the years 1984–2010. Using random-effects meta-analysis, we estimated summary effect sizes for trends in HIV-1 plasma viral loads and CD4+ T-cell counts. Results Baseline CD4+ T-cell counts showed a summary trend of decreasing cell counts [effect=−4.93 cells/µl per year, 95% confidence interval (CI) −6.53 to −3.3]. Set point viral loads showed a summary trend of increasing plasma viral RNA loads (effect=0.013 log10 copies/ml per year, 95% CI −0.001 to 0.03). The trend rates decelerated in recent years for both prognostic markers. Conclusion Our results are consistent with increased virulence of HIV-1 over the course of the epidemic. Extrapolating over the 30 years since the first description of AIDS, this represents a CD4+ T cells loss of approximately 148 cells/µl and a gain of 0.39 log10 copies/ml of viral RNA measured during early infection. These effect sizes would predict increasing rates of disease progression, and need for ART as well as increasing transmission risk.
The processes that permitted a few SIV strains to emerge epidemically as HIV groups remain elusive. Paradigmatic theories propose factors that may have facilitated adaptation to the human host (e.g., unsafe injections), none of which provide a coherent explanation for the timing, geographical origin, and scarcity of epidemic HIV strains. Our updated molecular clock analyses established relatively narrow time intervals (roughly 1880–1940) for major SIV transfers to humans. Factors that could favor HIV emergence in this time frame may have been genital ulcer disease (GUD), resulting in high HIV-1 transmissibility (4–43%), largely exceeding parenteral transmissibility; lack of male circumcision increasing male HIV infection risk; and gender-skewed city growth increasing sexual promiscuity. We surveyed colonial medical literature reporting incidences of GUD for the relevant regions, concentrating on cities, suffering less reporting biases than rural areas. Coinciding in time with the origin of the major HIV groups, colonial cities showed intense GUD outbreaks with incidences 1.5–2.5 orders of magnitude higher than in mid 20th century. We surveyed ethnographic literature, and concluded that male circumcision frequencies were lower in early 20th century than nowadays, with low rates correlating spatially with the emergence of HIV groups. We developed computer simulations to model the early spread of HIV-1 group M in Kinshasa before, during and after the estimated origin of the virus, using parameters derived from the colonial literature. These confirmed that the early 20th century was particularly permissive for the emergence of HIV by heterosexual transmission. The strongest potential facilitating factor was high GUD levels. Remarkably, the direct effects of city population size and circumcision frequency seemed relatively small. Our results suggest that intense GUD in promiscuous urban communities was the main factor driving HIV emergence. Low circumcision rates may have played a role, probably by their indirect effects on GUD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.