In this work, the fatigue behaviour of Ti6Al4V manufactured using electron beam melting, its dependency on porosity, distance from the base plate and build layer height were investigated. XCT scans of the fatigue sample gauge lengths were correlated to SEM investigations of the fracture surfaces. A comparison between the top and bottom halves of the builds in terms of defect population and fatigue behaviour was also made. Larger pores were detected in samples with a larger build layer height and lower position in the build chamber. Results also indicate that part geometry and pore location, specifically closeness to the surface, are important factors regarding the initiation location of fatigue fractures at 1 % strain. Furthermore, a fatigue critical lack of fusion defect was undetectable in the XCT scan.
Electron beam melting is a powder bed fusion (PBF) additive manufacturing (AM) method for metals offering opportunities for the reduction of material waste and freedom of design, but unfortunately also suffering from material defects from production. The stochastic nature of defect formation leads to a scatter in the fatigue performance of the material, preventing wider use of this production method for fatigue critical components. In this work, fatigue test data from electron beam melted Ti-6Al-4V specimens machined from as-built material are compared to deterministic fatigue crack growth calculations and probabilistically modeled fatigue life. X-ray computed tomography (XCT) data evaluated using extreme value statistics are used as the model input. Results show that the probabilistic model is able to provide a good conservative life estimate, as well as accurate predictive scatter bands. It is also shown that the use of XCT-data as the model input is feasible, requiring little investigated material volume for model calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.