We study the effect of a propagating surface acoustic wave (PSAW) with different frequencies on particles with different sizes in microfluidic channels. We find that the deflection critically depends on the applied frequency as well as on the particle size. For fixed frequencies, large particles are deflected and migrate perpendicular to the flow direction while smaller particles only follow the streamlines of the flow field. However, with increasing frequency of the PSAW above a size dependent limit, small particles are also actuated. This relation can be characterized by the wavenumber k and the particle radius r using the parameter κ = k · r. For the onset of deflection, we find a critical value κc ≅ 1.28 ± 0.20. Finally, we demonstrate how this device can be used for particle separation.
This paper demonstrates a technique for controlling position and effective area of a surface acoustic wave (SAW) in a PDMS microchannel and for shaping SSAWs independently of the interdigitated transducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.