Development of theoretical ideas about the mechanism of the rheological behaviour of building mixtures and the experimental assessment of their rheological properties is a relevant area of physiochemical research of materials. To assess the changes in rheological properties when varying the component composition of building mixtures, it is important to use quantitative indicators characterising the microstructure of the mixtures. Revealing the regularities of the formation of heterogeneous microstructures makes it possible to assess their correlation with the rheological properties of buildingmixtures at the macro level. The aim of the paper is to discuss the results of the implementation of methodological approaches, theoretical modelling, and experimental assessment of the quantitative indicators of the rheological properties of typical building mixtures.The experimental research methodology is based on the assessment of the rheological properties of heterogeneous dispersed systems (HDS), taking into account fractal-cluster manifestations in their microheterogeneous component. The experiment was carried out using model HDS containing the components of building mixtures. Their rheological properties were determined by rotational viscometry with different compositions of HDS. The fractal dimension D was used for a quantitativeassessment of the structural and rheological properties and identification of the patterns of their change depending on the composition of mixtures. The value was determined by mathematical modelling.We analysed model concepts of the rheological behaviour of building mixtures. It was shown that the existing rheological models of an elastic-viscous-plastic medium did not give a complete description of the processes of formation and destruction of the microstructure of concentrated HDS (building mixtures). We carried out an experimental assessment of the effect of the properties of solid phase particles on the change in the structural and rheological characteristics of HDS, taking into account the fractal-cluster principles of their structure formation.We specified the ideas about the mechanism of rheological behaviour of building mixtures. They take into consideration the processes of the formation and destruction of fractal-cluster formations in the microstructure of HDS. It was shown that the fractal dimension D can be one of the quantitative characteristics of the structural and rheological properties. We determined the correlation between the fractal dimension D and other experimental rheological characteristics: the ultimateshear stress and effective viscosity. The obtained results can be used to regulate rheological properties and optimise the technological processes for the manufacture of building materials and products. References1. Bazhenov Yu. M. Tekhnologiya betona [Concretetechnology]. Moscow: ASV Publ., 2007, 528 p. (In Russ.).2. Kastornykh L. I., Rautkin A. V., Raev A. S. Effectof water-retaining admixtures on some properties ofself-compacting concretes. Part 1. Rheologicalcharacteristics of cement compositions. StroitelʼnyeMaterialy [Construction Materials Russia]. 2017;750(7):34–38. DOI: https://doi.org/10.31659/0585-430X-2017-750-7-34-38 (In Russ., abstract in Eng.).3. Kastornykh L. I., Detochenko I. А., Arinina Е. S.Effect of water-retaining admixtures on someproperties of self-compacting concretes. Part 2.Rheological characteristics of concrete mixes andstrength of self-compacting concretes. StroitelʼnyeMaterialy [Construction Materials Russia]. 2017;11:22–27. Available at: https://www.elibrary.ru/item.asp?id=30744336 (In Russ., abstract in Eng.).4. Kalabina D. A., Yakovlev G. I., Drochitka R.,Grakhov V. P., Pervushin G. N., Bazhenov K. A., TroshkovaV. V. Rheological activation of fluoroanhydritecompositions with polycarboxylate esters. StroitelʼnyeMaterialy [Construction Materials Russia]. 2020;778(1–2): 38–47. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-38-47 (In Russ., abstract in Eng.).5. Kabagire K. D., Diederich P., Yahia A., Chekired M.Experimental assessment of the effect of particlecharacteristics on rheological properties of modelmortar. Construction and Building Materials. 2017;151:615–624. DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.1226. Kim J. S., Kwon S. H., Jang K. P., Choi M. S. Concretepumping prediction considering different measurementof the rheological properties. Constructionand Building Materials. 2018;171: 493–503. DOI:https://doi.org/10.1016/j.conbuildmat.2018.03.1947. Weng Y., Lu B., Li M., Liu Z., Tan M. J., Qian S.Empirical models to predict rheological properties offiber reinforced cementitious composites for 3Dprinting. Construction and Building Materials. 2018;189:67 6 – 6 8 5 . D O I : https://doi.org/10.1016/j.conbuildmat.2018.09.0398. Li D., Wang D., Ren C., Rui Y. Investigation ofrheological properties of fresh cement paste containingultrafine circulating fluidized bed fly ash. Constructionand Building Materials. 2018;188: 1007–1013. DOI:https://doi.org/10.1016/j.conbuildmat.2018.07.1869. Pan G., Li P., Chen L., Li G. A study of the effectof rheological properties of fresh concrete onshotcrete-rebound based on different additivecomponents. Construction and Building Materials.2019;224: 1069-1080. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.06010. Zhang S., Qiao W.-G., Chen P.-C., Xi K.Rheological and mechanical properties of microfinecement-based grouts mixed with microfine fly ash,colloidal nanosilica and superplasticizer. Constructionand Building Materials. 2019;212: 10–18. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.31411. Hedayatinia F., Delnavaz M., Emamzadeh S. S.Rheological properties, compressive strength and lifecycle assessment of self-compacting concretecontaining natural pumice pozzolan. Construction andBuilding Materials. 2019;206: 122–129. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.05912. Kabagire K. D., Yahia A., Chekired M. Towardthe prediction of rheological properties of self-consolidatingconcrete as diphasic material. Constructionand Building Materials. 2019;195: 600–612. DOI:https://doi.org/10.1016/j.conbuildmat. 2018.11.05313. Sonebi M., Abdalqader A., Fayyad T., Perrot A.,Bai Y. Optimisation of rheological parameters, inducedbleeding, permeability and mechanical properties ofsupersulfated cement grouts. Construction and BuildingMaterials. 2020;262: 120078. DOI: https://doi.org/10.1016/j.conbuildmat.2020.12007814. Roussel N. Rheological requirements forprintable concretes. Cement and Concrete Research.2018;112: 76–85. DOI: https://doi.org/10.1016/j.cemconres.2018.04.00515. Feys D., Asghari A. Influence of maximumapplied shear rate on the measured rheologicalproperties of flowable cement pastes. Cement andConcrete Research. 2019;117: 69–81. DOI:https://doi.org/10.1016/j.cemconres.2018.12.00316. Li Z., Cao G. Rheological behaviors and modelof fresh concrete in vibrated state. Cement and ConcreteResearch. 2019;120: 217–226. DOI: https://doi.org/10.1016/j.cemconres.2019.03.02017. Choi B. I., Kim J. H., Shin, T. Y. Rheologicalmodel selection and a general model for evaluatingthe viscosity and microstructure of a highlyconcentratedcement suspension. Cement and ConcreteResearch. 2019;123: 105775. DOI: https://doi.org/10.1016/j.cemconres.2019.05.02018. Khayat K. H., Meng W., Vallurupalli K., Teng L.Rheological properties of ultra-high-performanceconcrete – An overview. Cement and Concrete Research.2019;124: 105828. DOI: https://doi.org/10.1016/j.cemconres.2019.10582819. Ley-Hernández A. M., Feys D., Kumar A. Howdo different testing procedures affect the rheologicalproperties of cement paste? Cement and ConcreteResearch. 2020;137: 106189. DOI: https://doi.org/10.1016/j.cemconres.2020.10618920. Wyss H. M., Tervoort E. V., Gauckler L. J.Mechanics and microstructures of concentratedparticle gels. Journal of the American Ceramic Society.2005;88(9): 2337–2348. DOI: https://doi.org/10.1111/j.1551-2916.2005.00622.x21. Pertsev V. T., Ledenev A. A., Usachev S. M.,Usachev A. M. Evaluation of rheological properties ofbuilding mixes with obtaining additional quantitativecharacteristics. Kondensirovannye sredy i mezhfazniegranitsy = Condensed Matter and Interphases. 2016;18(3):394–401. Available at: https://journals.vsu.ru/kcmf/article/view/148 (In Russ., abstract in Eng.).22. Alekseeva E. V., Bobryshev A. N., Voronov P. V.,Golovinskii P. A., Lakhno A. V., Pertsev V. T. Strukturnoreologicheskiesvoistva dispersno-zernistykh sistem[Structural and rheological properties of dispersedgranularsystems]. Voronezh: VGASU Publ.; 2010.196 p. (In Russ.).23. Malkin A. Ya., Isaev A. I. Reologiya: kontseptsii,metody, prilozheniya [Rheology: concepts, methods,applications]. St. Petersburg: Professiya Publ.; 2007.560 p. (In Russ.)24. Shchukin E. D., Pertsov A. V., Amelina E. A.Kolloidnaya khimiya [Colloidal chemistry]. Moscow:Vysshaya shkola Publ.; 2007. 444 p. (In Russ.)25. Bibik E. E. Reologiya dispersnykh sistem[Rheology of disperse systems]. Leningrad: Izd-voLeningr. un-ta Publ., 1981, 172 p. (In Russ.)26. Pertsev V. Т., Ledenev А. А. Metodologicheskiepodkhody k issledovaniyu reologicheskikh svoistvstroitel’nykh smesei [Methodological approaches toresearch rheological properties of building mixtures].Nauchnyi vestnik Voronezhskogo GASU. Seriya: Fizikokhimicheskieproblemy i vysokie tekhnologii stroitel’nogomaterialovedeniya. 2017; 1(14): 71–77. (In Russ.)27. Mills P., Snabre P. The fractal concept in therheology of concentrated suspensions. Progress andTrends in Rheology II. 1988: 105–108. DOI: https://doi.org/10.1007/978-3-642-49337-9_2628. Ledenev A. A., Usachev S. M., Pertsev V. T.Strukturno-reologicheskie svoistva stroitel’nykhsmesei [Structural and rheological properties ofbuilding mixtures]. Stroitelʼnye Materialy [ConstructionMaterials Russia]. 2009; 7: 68–70. Available at: https://www.elibrary.ru/item.asp?id=12830653 (In Russ.)29. Pertsev V. T., Ledenev A. A. Razrabotkaeffektivnykh kompleksnykh organomineral’nykh dobavokdlya regulirovaniya reologicheskikh svoistv betonnykhsmesei [Development of effective complexorganomineral additives for regulation of rheologicalproperties of concrete mixtures]. Voronezh:Voronezhskii GASU Publ.; 2012. 136 p. (In Russ.)30. Pertsev V. T., Ledenev A. A., Rudakov O. B.Physical and chemical approaches to the developmentof effective organomineral additives for concrete.Kondensirovannye sredy i mezhfaznie granitsy =Condensed Matter and Interphases. 2018;20(3): 432–442. DOI: https://elibrary.ru/item.asp?id=23233672(In Russ., Abstract in Eng.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.