We have designed a simple apparatus for measurement of heat transfer during pool boiling in order to find or create suitable correlations for heat-transfer coefficient, which could be used for various liquids and conditions. We have run several testing experiments with tap and deionized water. This contribution presents proceedings and the first results of these experiments as well as comparison of these results with some published and verified correlations.
The boiling performance of functionalized hybrid aluminum surfaces was experimentally investigated for water and self-rewetting mixtures of water and 1-butanol. Firstly, microstructured surfaces were produced via chemical etching in hydrochloric acid and the effect of the etching time on the surface morphology was evaluated. An etching time of 5 min was found to result in pitting corrosion and produced weakly hydrophilic microstructured surfaces with many microcavities. Observed cavity-mouth diameters between 3.6 and 32 μm are optimal for efficient nucleation and provided a superior boiling performance. Longer etching times of 10 and 15 min resulted in uniform corrosion and produced superhydrophilic surfaces with a micropeak structure, which lacked microcavities for efficient nucleation. In the second stage, hybrid surfaces combining lower surface energy and a modified surface microstructure were created by hydrophobization of etched aluminum surfaces using a silane agent. Hydrophobized surfaces were found to improve boiling heat transfer and their boiling curves exhibited a significantly lower superheat. Significant heat transfer enhancement was observed for hybrid microcavity surfaces with a low surface energy. These surfaces provided an early transition into nucleate boiling and promoted bubble nucleation. For a hydrophobized microcavity surface, heat transfer coefficients of up to 305 kW m−2 K−1 were recorded and an enhancement of 488% relative to the untreated reference surface was observed. The boiling of self-rewetting fluids on functionalized surfaces was also investigated, but a synergistic effect of developed surfaces and a self-rewetting working fluid was not observed. An improved critical heat flux was only obtained for the untreated surface, while a lower critical heat flux and lower heat transfer coefficients were measured on functionalized surfaces, whose properties were already tailored to promote nucleate boiling.
Increasing heat dissipation requirements of small and miniature devices demands advanced cooling methods, such as application of immersion cooling via boiling heat transfer. In this study, functionalized copper surfaces for enhanced heat transfer are developed and evaluated. Samples are functionalized using a chemical oxidation treatment with subsequent hydrophobization of selected surfaces with a fluorinated silane. Pool boiling tests with water, water/1-butanol mixture with self-rewetting properties and a novel dielectric fluid with low GWP (Novec™ 649) are conducted to evaluate the boiling performance of individual surfaces. The results show that hydrophobized functionalized surfaces covered by microcavities with diameters between 40 nm and 2 µm exhibit increased heat transfer coefficient (HTC; enhancements up to 120%) and critical heat flux (CHF; enhancements up to 64%) values in comparison with the untreated reference surface, complemented by favorable fabrication repeatability. Positive surface stability is observed in contact with water, while both the self-rewetting fluids and Novec™ 649 gradually degrade the boiling performance and in some cases also the surface itself. The use of water/1-butanol mixtures in particular results in surface chemistry and morphology changes, as observed using SEM imaging and Raman spectroscopy. This seems to be neglected in the available literature and should be focused on in further studies.
Heat transfer coefficients were investigated for saturated nucleate pool boiling of binary mixtures of water and glycerin at atmospheric pressure in a wide range of concentrations and heat fluxes. Mixtures with water mass fractions from 100% to 40% were boiled on a horizontal flat copper surface at heat fluxes from about 25 up to 270kWm−2. Experiments were carried out by static and dynamic method of measurement. Results of the static method show that the impact of mixture effects on heat transfer coefficient cannot be neglected and ideal heat transfer coefficient has to be corrected for all investigated concentrations and heat fluxes. Experimental data are correlated with the empirical correlation α=0.59q0.714+0.130ωw with mean relative error of 6%. Taking mixture effects into account, data are also successfully correlated with the combination of Stephan and Abdelsalam (1980) and Schlünder (1982) correlations with mean relative error of about 15%. Recommended coefficients of Schlünder correlation C0=1 and βL=2×10−4ms−1 were found to be acceptable for all investigated mixtures. The dynamic method was developed for fast measurement of heat transfer coefficients at continuous change of composition of boiling mixture. The dynamic method was tested for water–glycerin mixtures with water mass fractions from 70% down to 35%. Results of the dynamic method were found to be comparable with the static method. For water–glycerin mixtures with higher water mass fractions, precise temperature measurements are needed.
Heat transfer coefficient (HTC) was experimentally measured for saturated and subcooled pool boiling of binary mixtures of water and glycerin. Saturated boiling was studied for mixtures with water mass fractions 𝜔 w from 100 % to 60 % on horizontal flat nickel-plated surfaces at heat fluxes from 50 to 650 kW m −2 at atmospheric pressure. Subcooled boiling was investigated in the range of subcooling from 0 to 30 K at heat fluxes of approximately 250, 450 and 650 kW m −2 . It was found that mixture effects have a significant impact on saturated boiling HTC even for mixtures with very low content of glycerin as significant drops of HTC were observed for subtle changes in composition for mixtures of high 𝜔 w . Measured HTC was successfully correlated with the combination of Yagov (1999) and Inoue and Monde (2009) correlations with a mean relative error of 12 %. A simple empirical HTC correlation is also proposed. For subcooled boiling, developed subcooled boiling regime was reached for all investigated heat fluxes. For this regime, correlations which were able to predict HTC for saturated boiling were employed to predict subcooled boiling HTCs for all investigated concentrations, heat fluxes and subcoolings. Effect of subcooling and effect of liquid composition on total HTC were of the same importance for mixtures with higher water content. With increasing concentration of glycerin in the mixture, decrease of total HTC with increasing subcooling became more significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.