The calculation diagrams of oscillating systems and operation features of vibratory finishing machines are considered. The mathematical models of three-mass and four-mass oscillating systems are presented. The amplitude values of the oscillating masses displacements are derived. The functions of inertial and stiffness parameters optimization are formed. The optimization problems are solved with a help of MathCAD software. On the basis of synthesized inertial and stiffness parameters, the amplitude-frequency characteristics of the oscillating systems of vibratory finishing machines are formed and analyzed. In order to verify the validity of the proposed theoretical approaches, the simulation of the mathematical model of the oscillating system motion is carried out by means of numerical solving of the system of differential equations of the oscillating masses motion. The proposed structural diagrams and the operation schemes of the vibratory finishing machine, as well as the derived analytical formulas may be used by designers, researchers and technologists while improving existent and developing new equipment for vibro-finishing treatment.
Автоматизація виробничих процесів у машинобудуванні та приладобудуванні. Вип. 52. 2018 32 УДК 621.923.7 \ I. V. Kuzio, V. M. Zakharov, V. M. Korendiy doi The purpose of the paper. Substantiation of structure (design), parameters and operation modes of the improved vibratory finishing machine. Analysis of dynamical processes which occur during "lap over lap" dressing. Investigation methodology. Mathematical model of motion of the mechanical system of vibratory finishing machine was developed on the basis of Lagrange differential equations of the second order. For the purpose of describing friction between the working surfaces of the laps, the Coulomb friction model was used. Stiffness parameters of all elastic elements were modeled in accordance with the Hooke's law. Energy losses in elastic elements during their tension-compression were taken into account by corresponding coefficients of dissipation (damping). Simulation modelling of motion of the machine's mechanical oscillatory system was carried out in MathCAD software by means of solving the derived differential equations of the system's motion using the numerical methods of Runge-Kutta. Obtained results. Structural and functional peculiarities of the improved vibratory finishing machine for lapping flat surfaces of cylindric and prismatic parts were considered. Design (calculation) diagram of its mechanical oscillatory system was substantiated and differential equations of motion of oscillating masses were derived. Simulation modelling of the laps' motion during their dressing was carried out and the correspondence of the obtained results to the input modelling parameters (operation in near-resonance mode with the given oscillation amplitudes) was analyzed. Scientific novelty. For the first time we obtained following results: spatial design (calculation) diagram of mechanical oscillatory system of the improved vibratory finishing machine was proposed; mathematical model of plane-parallel motion of oscillating masses (with circular trajectories of oscillations) was developed; possibilities of performing the laps dressing using "lap over lap" method were substantiated by means of ensuring their circular oscillations. Practical value. The results of the performed investigations can be used during designing new and improving existing structures of vibratory finishing machines for finishing treatment (lapping) of flat surfaces of cylindric and prismatic parts.
Problem statement. Designing and manufacturing of efficient resonant vibratory lapping machines with linear oscillations of laps demand an accurate and detailed calculation of parameters of their elastic systems and electromagnetic drives. Purpose. The main objective of this research consists in derivation of analytical dependencies for calculating the stiffness and excitation parameters of mechanical oscillatory system of vibratory finishing machine in order to ensure its resonance operation mode. Methodology. The technique of the research is based on fundamental concepts of engineering mechanics, strength of materials and theory of mechanical vibrations. Findings (results). The design diagram of mechanical oscillatory system of vibratory finishing machine with linear oscillations of laps is considered and corresponding equations of motion are presented. Analytical dependencies for calculating stiffness and excitation parameters of the system are deduced. The example of parameters calculation is given and time dependencies of the system's motion are constructed. Originality (novelty). The mathematical model of linear oscillations of the three-mass mechanical system of vibratory finishing machine was developed. The possibilities of performing the laps dressing using "lap over lap" method were substantiated. Practical value. The results of the performed investigations can be used during designing new designs and improving existing structures of vibratory finishing machines for lapping flat surfaces of cylindric and prismatic parts. Scopes of further investigations. In further investigations, it is necessary to analyse the influence of the viscous damping on the system's motion. In order to substantiate (justify) the obtained theoretical results, the experimental investigations should be carried out.
Problem statement. The development of energy-efficient and high-performance vibratory lapping machines demands the improvement of their design diagrams and calculation techniques. Purpose. The main objectives of this research consist in detailed analysis of existent design diagrams and mathematical models of vibratory lapping machines; designing the three-mass hanger-type structures of such machines providing circular oscillations of laps; derivation of differential equations describing the motion of their oscillatory systems. Methodology. The technique of the research is based on fundamental concepts of engineering mechanics, strength of materials and theory of mechanical vibrations. Findings (results). The improved design diagrams of vibratory lapping machines with circular oscillations of laps are proposed and the corresponding differential equations describing the motion of the working elements are derived. Originality (novelty). The mathematical model of circular oscillations of the three-mass mechanical oscillatory system of vibratory lapping machine is developed. The possibilities of performing the double-side lapping of cylindrical and prismatic parts are considered. Practical value. The results of the performed investigations can be used during creating new designs and improving existent structures of vibratory finishing machines for lapping flat surfaces of cylindrical and prismatic parts. Scopes of further investigations. In further investigations, it is necessary to perform the numerical modelling of the system’s motion using the derived differential equations, and to compare the obtained theoretical results with the results of experimental investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.