Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an underlying graph topology, which is subject to discrete changes over time. Given a static underlying graph G, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge of G, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs has focused on the notion of a temporal path and other "path-related" temporal notions, only few attempts have been made to investigate "non-path" temporal graph problems. In this paper, motivated by applications in sensor and in transportation networks, we introduce and study two natural temporal extensions of the classical problem Vertex Cover. In both cases we wish to minimize the total number of "vertex appearances" that are needed to "cover" the whole temporal graph. In our first problem, Temporal Vertex Cover, the aim is to cover every edge at least once during the lifetime of the temporal graph, where an edge can be covered by one of its endpoints, only at a time step when it is active. In our second, more pragmatic variation Sliding Window Temporal Vertex Cover, we are also given a natural number ∆, and our aim is to cover every edge at least once at every ∆ consecutive time steps. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. In particular, we provide strong hardness results, complemented by various approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions.
An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is generally NP-hard. We study the complexity of this problem in classes of graphs defined by finitely many forbidden induced subgraphs and conjecture that the problem admits a dichotomy in this family, i.e. it is either NP-hard or polynomial-time solvable for each class in the family. A helpful tool to study the complexity of an algorithmic problem on finitely defined classes of graphs is the notion of boundary classes. However, none of such classes has been identified so far for the upper dominating set problem. In the present paper, we discover the first boundary class for this problem and prove the dichotomy for classes defined by a single forbidden induced subgraph.
Spreading processes on graphs are a natural model for a wide variety of real-world phenomena, including information or behaviour spread over social networks, biological diseases spreading over contact or trade networks, and the potential flow of goods over logistical infrastructure. Often, the networks over which these processes spread are dynamic in nature, and can be modeled with graphs whose structure is subject to discrete changes over time, i.e. with temporal graphs. Here, we consider temporal graphs in which edges are available at specified timesteps, and study the problem of deleting edges from a given temporal graph in order to reduce the number of vertices (temporally) reachable from a given starting point. This could be used to control the spread of a disease, rumour, etc. in a temporal graph. In particular, our aim is to find a temporal subgraph in which a process starting at any single vertex can be transferred to only a limited number of other vertices using a temporally-feasible path (i.e. a path, along which the times of the edge availabilities increase). We introduce a natural deletion problem for temporal graphs and we provide positive and negative results on its computational complexity, both in the traditional and the parameterised sense (subject to various natural parameters), as well as addressing the approximability of this problem.
The idea of implicit representation of graphs was introduced in [S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, SIAM J. Discrete Mathematics, 5 (1992) 596-603] and can be defined as follows. A representation of an n-vertex graph G is said to be implicit if it assigns to each vertex of G a binary code of length O(log n) so that the adjacency of two vertices is a function of their codes. Since an implicit representation of an n-vertex graph uses O(n log n) bits, any class of graphs admitting such a representation contains 2 O(n log n) labelled graphs with n vertices. In the terminology of [J. Balogh, B. Bollobás, D. Weinreich, The speed of hereditary properties of graphs, J. Combin. Theory B 79 (2000) 131-156] such classes have at most factorial speed of growth. In this terminology, the implicit graph conjecture can be stated as follows: every class with at most factorial speed of growth which is hereditary admits an implicit representation. The question of deciding whether a given hereditary class has at most factorial speed of growth is far from being trivial. In the present paper, we introduce a number of tools simplifying this question. Some of them can be used to obtain a stronger conclusion on the existence of an implicit representation. We apply our tools to reveal new hereditary classes with the factorial speed of growth. For many of them we show the existence of an implicit representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.