We test the performance of deep deterministic policy gradient (DDPG)-a deep reinforcement learning algorithm, able to handle continuous state and action spaces-to learn Nash equilibria in a setting where firms compete in prices. These algorithms are typically considered "model-free" because they do not require transition probability functions (as in e.g., Markov games) or predefined functional forms. Despite being "model-free", a large set of parameters are utilized in various steps of the algorithm. These are e.g., learning rates, memory buffers, state-space dimensioning, normalizations, or noise decay rates and the purpose of this work is to systematically test the effect of these parameter configurations on convergence to the analytically derived Bertrand equilibrium.We find parameter choices that can reach convergence rates of up to 99%. The reliable convergence may make the method a useful tool to study strategic behavior of firms even in more complex settings.
We test the performance of deep deterministic policy gradient—a deep reinforcement learning algorithm, able to handle continuous state and action spaces—to find Nash equilibria in a setting where firms compete in offer prices through a uniform price auction. These algorithms are typically considered “model-free” although a large set of parameters is utilized by the algorithm. These parameters may include learning rates, memory buffers, state space dimensioning, normalizations, or noise decay rates, and the purpose of this work is to systematically test the effect of these parameter configurations on convergence to the analytically derived Bertrand equilibrium. We find parameter choices that can reach convergence rates of up to 99%. We show that the algorithm also converges in more complex settings with multiple players and different cost structures. Its reliable convergence may make the method a useful tool to studying strategic behavior of firms even in more complex settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.