Over the past decades much research focused on the biosynthesis of the plant hormone jasmonyl-isoleucine (JA-Ile). While many details about its biosynthetic pathway as well about its physiological function are established nowadays, knowledge about its catabolic fate is still scarce. Only recently, the hormonal inactivation mechanisms became a stronger research focus. Two major pathways have been proposed to inactivate JA-Ile: i) The cleavage of the jasmonyl-residue from the isoleucine moiety, a reaction that is catalyzed by specific amido-hydrolases, or ii), the sequential oxidation of the ω-end of the pentenyl side-chain. This reaction is catalyzed by specific members of the cytochrome P450 (CYP) subfamily CYP94: CYP94B1, CYP94B3 and CYP94C1. In the present study, we further investigated the oxidative fate of JA-Ile by expanding the analysis on Arabidopsis thaliana mutants, lacking only one (cyp94b1, cyp94b2, cyp94b3, cyp94c1), two (cyp94b1xcyp94b2, cyp94b1xcyp94b3, cyp94b2xcyp94b3), three (cyp94b1xcyp94b2xcyp94b3) or even four (cyp94b1xcyp94b2xcyp94b3xcyp94c1) CYP94 functionalities. The results obtained in the present study show that CYP94B1, CYP94B2, CYP94B3 and CYP94C1 are responsible for catalyzing the sequential ω-oxidation of JA-Ile in a semi-redundant manner. While CYP94B-enzymes preferentially hydroxylate JA-Ile to 12-hydroxy-JA-Ile, CYP94C1 catalyzes primarily the subsequent oxidation, yielding 12-carboxy-JA-Ile. In addition, data obtained from investigating the triple and quadruple mutants let us hypothesize that a direct oxidation of unconjugated JA to 12-hydroxy-JA is possible in planta. Using a non-targeted metabolite fingerprinting analysis, we identified unconjugated 12-carboxy-JA as novel jasmonate derivative in floral tissues. Using the same approach, we could show that deletion of CYP94-genes might not only affect JA-homeostasis but also other signaling pathways. Deletion of CYP94B1, for example, led to accumulation of metabolites that may be characteristic for plant stress responses like systemic acquired resistance. Evaluation of the in vivo function of the different CYP94-enzymes on the JA-sensitivity demonstrated that particularly CYP94B-enzymes might play an essential role for JA-response, whereas CYP94C1 might only be of minor importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.