Hyperspectral PRISMA images are new and have not yet been evaluated for their ability to detect marine plastic litter. The hyperspectral PRISMA images have a fine spectral resolution, however, their spatial resolution is not high enough to enable the discrimination of small plastic objects in the ocean. Pansharpening with the panchromatic data enhances their spatial resolution and makes their detection capabilities a technological challenge. This study exploits, for the first time, the potential of using satellite hyperspectral data in detecting small-sized marine plastic litter. Controlled experiments with plastic targets of various sizes constructed from several materials have been conducted. The required pre-processing steps have been defined and 13 pansharpening methods have been applied and evaluated for their ability to spectrally discriminate plastics from water. Among them, the PCA-based substitution efficiently separates plastic spectra from water without producing duplicate edges, or pixelation. Plastic targets with size equivalent to 8% of the original hyperspectral image pixel coverage are easily detected. The same targets can also be observed in the panchromatic image, however, they cannot be detected solely by the panchromatic information as they are confused with other appearances. Exploiting spectra derived from the pan-sharpened hyperspectral images, an index combining methodology has been developed, which enables the detection of plastic objects. Although spectra of plastic materials present similarities with water spectra, some spectral characteristics can be utilized for producing marine plastic litter indexes. Based on these indexes, the index combining methodology has successfully detected the plastic targets and differentiated them from other materials.INDEX TERMS PRISMA satellite data, hyperspectral imaging, pansharpening, marine pollution, plastic litter detection, indexes, controlled experiments, spectral analysis, image denoising.
A significant amount of the produced solid waste reaching the oceans is made of plastics. The amount of plastic debris in the ocean and coastal areas is steadily increasing and is now a major global environmental issue. The monitoring of marine plastic litter, ground-based monitoring systems and/or field campaigns are time-consuming, expensive, require great organisational efforts, and provide very limited information in terms of the spatial and temporal dynamics of marine debris. Earth Observation (EO) by satellite can contribute significantly to marine plastic litter detection. In 2019, a new hyperspectral satellite, called PRISMA, was launched by the Italian Space Agency. The high spectral resolution of PRISMA may allow for better detection of floating plastic materials. At the same time, Machine Learning (ML) algorithms have the potential to find hidden patterns and identify complex relations among data and are increasingly employed in EO. This paper presents the development of a new method of identifying floating plastic objects in coastal areas by exploiting pan-sharpened hyperspectral PRISMA data, based on the combination of unsupervised and supervised ML algorithms. The study consisted of a configuration phase, during which the algorithms were trained in a fully controlled test, and a validation phase, in which the pre-trained algorithms were applied to satellite data collected at different sites and in different periods of the year. Despite the limited input data, results suggest that the tested ML approach, applied to pan-sharpened PRISMA data, can effectively recognise floating objects and plastic targets. The study indicates that increasing input datasets can help achieve higher-quality results.
Cloud contamination represents a large obstacle for mapping the earth's surface using remotely sensed data. Therefore, cloudy pixels should be identified and eliminated before any further data processing can be achieved. Although several threshold, multi-temporal and machine learning applications have been developed to tackle this issue, it still remains a challenge. The main challenges are imposed by the difficulty to detect thin clouds and to separate bright clouds from bright non-cloud objects. Convolutional neural networks (CNNs) have proven to be one of the most promising methods for image classification tasks and their use is rapidly increasing in remote sensing problems. CNNs present interesting properties for image processing since they directly exploit not only the spectral information but also the spatial covariance of the data. In this work, we study the applicability of CNNs in cloud detection of Sentinel-2 imagery, a complex remote sensing problem with crucial spatial context. A patch-to-pixel CNN architecture consisting of three convolutional layers and two fully connected layers is trained on a recently available manually created public dataset. The results were evaluated both qualitatively and quantitatively through comparison with ground truth cloud masks and state-of-the art pixel-based algorithms (Fmask, Sen2Cor). It was shown that the proposed architecture even though simpler than the deep learning architectures proposed by recent literature, performs very favorably, especially in the challenging cases. Besides the evaluation of the results, feature maps where observed as an initial effort to extract the weights of the useful kernels for cloud masking applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.