Bismuth oxychloride photocatalysts were obtained using solvothermal synthesis and different additives (CTAB—cetyltrimethylammonium bromide, CTAC—cetyltrimethylammonium chloride, PVP–polyvinylpyrrolidone, SDS–sodium dodecylsulphate, U—urea and TU—thiourea). The effect of the previously mentioned compounds was analyzed applying structural (primary crystallite size, crystal phase composition, etc.), morphological (particle geometry), optical (band gap energy) parameters, surface related properties (surface atoms’ oxidation states), and the resulted photocatalytic activity. A strong dependency was found between the surface tension of the synthesis solutions and the overall morpho-structural parameters. The main finding was that the characteristics of the semiconductors can be tuned by modifying the surface tension of the synthesis mixture. It was observed after the photocatalytic degradation, that the white semiconductor turned to grey. Furthermore, we attempted to explain the gray color of BiOCl catalysts after the photocatalytic decompositions by Raman and XPS studies.
Strontium titanates were prepared with different morphologies by varying the ratio of solvents used during the synthesis. The effects of morphology and solvent (ethylene glycol to water) ratio were investigated both on the structure and photocatalytic activity of the samples. Structural properties were determined by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and nitrogen adsorption measurements. The photocatalytic activity of the samples was evaluated by the photocatalytic oxidation of phenol and by the photocatalytic reduction of carbon dioxide. The ratio of solvents notably influenced the morphology, strontium carbonate content, primary crystallite size, and specific surface area of the samples. Samples prepared at low ethylene glycol to water ratios were spherical, while the ones prepared at high ethylene glycol to water ratios could be characterized predominantly by lamellar morphology. The former samples were found to have the highest efficiency for phenol degradation, while the sample with the most well-defined lamellar morphology proved to be the best for CO2 reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.