During Pleistocene glacial-interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel-toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species' range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial-interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of 'niche drifting', an alteration of the species' realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species' responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment -information becoming increasingly important to predicting biotic responses to future environmental changes.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.
Abstract. Although only distantly related, Anomalobuthus and Liobuthus are monotypic and sympatric scorpion genera with psammophilic phenotypes well-suited to the dune communities of the Karakum and Kyzylkum deserts of Central Asia. We predicted that this unique combination of phenotypic convergence and sympatry should have resulted in shared phylogeographic histories. We tested this hypothesis by using mitochondrial DNA data and molecular dating techniques to reconstruct the matrilineal genealogies of A. rickmersi and L. kessleri. We also developed current and late-glacial species distribution models and landscape interpolations of genetic distances to assess the influence of historical barriers and Pleistocene climates on the phylogeography of each species. Both genera exhibited signals of restricted gene flow across the Amu Darya River, supporting our prediction of mutual histories. Levels of initial genetic differentiation within each genus date to the Late Miocene to late Pliocene. Distribution models indicate that suitable habitat may have fragmented during the Pleistocene, generally in an east-west orientation. Although the observed genetic differentiation at the Amu Darya River could be a coincidental product of lineage sorting, the fact that both species display this pattern suggests that the river has been an important biogeographic element in the development of Central Asian biotas.
We investigated the phylogeography of the closely related relict leopard frog Rana onca (=Lithobates onca) and lowland leopard frog Rana yavapaiensis (=Lithobates yavapaiensis) -two declining anurans from the warm-desert regions of south-western North America. We used sequence data from mitochondrial DNA (mtDNA) to assess 276 individuals representing 30 sites from across current distributions. Our analysis supports a previously determined phylogenetic break between these taxa, and we found no admixing of R. onca and R. yavapaiensis haplotypes within our extensive sampling of sites. Our phylogeographic assessment, however, further divided R. yavapaiensis into two distinct mtDNA lineages, one representing populations across Arizona and northern Mexico and the other a newly discovered population within the western Grand Canyon, Arizona. Estimates of sequence evolution indicate a possible Early Pleistocene divergence of R. onca and R. yavapaiensis, followed by a Middle Pleistocene separation of the western Grand Canyon population of R. yavapaiensis from the main R. yavapaiensis clade. Phylogeographic and demographic analyses indicate population or range expansion for R. yavapaiensis within its core distribution that appears to predate the latest glacial maximum. Species distribution models under current and latest glacial climatic conditions suggest that R. onca and R. yavapaiensis may not have greatly shifted ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.