In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.
Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10 -12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 m from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.
Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15–17) of the two BC types converge onto single PCs, whereas fewer (6–7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800–900 and 700–800 PCs, respectively, while an AAC can innervate 600–650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.