The appearance of White Etching Cracks (WEC), not covered by the ISO 281 modified failure rate calculation, leads to difficulties in predicting bearing reliability. This uncertainty in bearing applications leads to a worldwide activity in order to understand and prevent this situation since the WEC failure mode deviates from the traditional Rolling Contact Fatigue (RCF) mode. Plenty of factors have been found to influence this phenomenon over the years, however the precise initiation of the WEC is still under debate. In order to understand the initiation and analyze the temporal evolution, interrupted tests on the same material were performed under conditions that were known to lead to WEC formation and RCF. To avoid the added complexity of boundary lubrication, a Deep Groove Ball Bearing (DGBB) test rig under full lubrication (Elastohydrodynamic Lubrication, EHL) was chosen. Within a standard operating mode, named Mode 1 (RCF), the bearings are solely subjected to a radial load. By suspending the tests at different time steps, a continuous progress of changes in the subsurface material structure seen as equiaxed grains with low dislocation densities, identified as ferrite, is observed. The bearings did not fail up to load cycles of 109. In contrast, a Mode 2 Electrical Charged Contact Fatigue (ECCF) test provoked the early formation of cracks and crack networks, first without WEA, then later with WEA. It became obvious when comparing Mode 1 (RCF) with Mode 2 (ECCF) that Mode 2 (ECCF) achieves far fewer load cycles until failure occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.