The object of this study is the process of thermostating the main fairing with a satellite at the stage of prelaunch preparation of the launch vehicle. When thermostating, it is necessary to predict the risk of dust contamination of the satellite surface. Currently, there are no normative methods for solving this problem. A numerical model has been proposed that makes it possible to quickly predict the dynamics of pollution of any surface of the satellite. A numerical model has been built for analyzing the zones of dust pollution of air in the main fairing of the launch vehicle during thermostating. The novelty of the model is the use of the Laplace equation for the speed potential, based on which the problem of aerodynamics is solved, namely, the flow rate in the main fairing is determined. Based on the model built, a computational experiment was conducted for dust particles with a diameter of 6 µm that fall into the main fairing during thermostating. The results of the research showed that the formation of areas of dust pollution near the satellite is influenced by the geometric shape of the satellite, which affects the formation of an uneven air velocity field in the main fairing and the organization of air supply to the main fairing. Calculations are performed within a few seconds, which makes it possible during working day to conduct a set of studies into the rational choice of the organization of air exchange of the main fairing during its thermostating. The constructed numerical model can be used in design organizations to scientifically substantiate the thermostating mode of the main fairing, taking into consideration the characteristics of the satellite located in it
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.