Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature involving endothelial and vascular smooth muscle cell (VSMC) proliferation, vasoconstriction, right ventricular hypertrophy, and eventually, right heart failure and death. PAH occurs 1000-fold more frequently in HIV patients than in the general population. Although conventional HIV therapy with nucleoside reverse transcriptase inhibitors (NRTIs) leads to regression of PAH, highly active antiretroviral therapy (HAART; two NRTI plus a protease inhibitor) increases the incidence of HIV-associated PAH as much as twofold. Although there are relatively few models for PAH, previous reports indicate the disease can be initiated by endothelial injury and release of the mitogen endothelin-1 (ET-1). ET-1, in turn, stimulates VSMC proliferation. To determine whether HAART induces endothelial injury and release of cytokines like ET-1, we treated human umbilical vein endothelial cells with micromolar amounts of AZT (3'-azido-3'-deoxythymidine), the protease inhibitor indinavir, or AZT plus indinavir, and measured cell viability, mitochondrial function, and ET-1 release. Both AZT and indinavir induced marked decreases in cellular oxygen uptake, as well as increases in ET-1 release. Although the drugs had no apparent effect on proliferation in VSMCs alone, in cocultures of VSMCs plus endothelial cells, the drugs increased proliferation of both endothelial cells and VSMCs. Finally, when cocultures of endothelial cells and VSMCs were treated with BQ-123 and BQ-788, selective antagonists for ET(A) and ET(B) receptors, respectively, drug-induced proliferation of both VSMCs and endothelial cells was attenuated. These data thus suggest that HIV drug cocktails may exacerbate preexisting HIV-associated PAH by inducing endothelial mitochondrial dysfunction, in turn stimulating the release of ET-1, and ultimately, vascular cell proliferation.
Vascular smooth muscle cell (VSMC) proliferation is pivotal in the progression of hypertension, atherosclerosis, and restenosis. Resveratrol is a grape polyphenol that is implicated as an important contributor to red wine's vascular protective effects. Its antimitogenic action on VSMC is attributed to an array of pleiotropic effects, including modulation of the estrogen receptor (ER). To elucidate the mechanisms underlying resveratrol-mediated ER modulation and its inhibition of VSMC proliferation, we treated VSMC with resveratrol with or without the ER antagonist ICI 182,780 and measured cell proliferation and nitric oxide (NO) production. Resveratrol dose-dependently decreased VSMC DNA synthesis, with a half maximal inhibitory concentration (IC50) of 3.73+/-0.57 microM, and dramatically slowed cell growth, but did not induce VSMC apoptosis. Resveratrol-mediated decrease in proliferation was reversed by cotreatment with ICI 182,780, and resveratrol effectively competed with 17beta-estradiol for binding to the ER, exhibiting an IC50 of 8.92+/-0.14 microM. Resveratrol induced a sustained increase in ER-dependent NO production. Further, resveratrol-mediated decrease in VSMC proliferation was blunted by cotreatment with the general nitric oxide synthase (NOS) inhibitor N5-(1-Iminomethyl)-L-ornithine, dihydrochloride or with the inducible NOS (iNOS)-selective inhibitor S,S'-1,4-phenylene-bis (1,2-ethanediyl)bis-isothiourea, dihydrobromide, but not with the neuronal NOS-selective inhibitor 7-nitroindazole. Though resveratrol did not alter iNOS protein levels, it dose-dependently increased levels of iNOS activity, of the iNOS cofactor tetrahydrobiopterin (BH4), and of guanosine triphosphate cyclohydrolase I protein, the rate-limiting enzyme in BH4 biosynthesis. In addition, all of these effects were abolished by cotreatment with ICI 182,780. Thus, the antimitogenic effects of resveratrol on VSMC may be mediated by an ER-induced increase in iNOS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.