Cu‐mediated radiofluorination of arylboronic acid pinacol esters (ArylBPin) using Cu(OTf)2(Py)4 complex is a useful approach for the introduction of [18F]fluorine into non‐activated arenes and heteroarenes. Owing to the complexity of the mechanism and wide variation in substrate reactivity the choice of reaction conditions must be made individually for every precursor. Careful selection of phase‐transfer catalysts also plays a role, as Cu‐catalyst and ArylBPin precursors are known to be unstable in basic conditions. Using tetrabutylammonium triflate alcohol solution for elution of [18F]fluoride from ion‐exchange cartridge and employing same alcohol as a co‐solvent in the following labelling step, we have developed a general protocol resulting in >80 % fluorination efficiency of ArylBPin precursors for 4‐[18F]fluoro‐D,L‐phenylalanine and 6‐L‐[18F]FDOPA. Radiofluorination in neat alcohol was particularly effective for the synthesis of 6‐L‐[18F]FDOPA, allowing for substantial increase of yield and decrease of synthesis time compared to current methods (activity yield 14.5 ± 0.5 %, 70 min synthesis time).
The 16α-[18F]Fluoroestradiol ([18F]FES) is an established PET radiotracer for estrogen positive (ER+) breast cancer. Although the radiosynthesis is well-described, the majority of the published methods suffer from modest or irreproducible yields and time-intensive purification procedures. In view of the considerable clinical applications, development of a more efficient and faster synthesis of [18F]FES still remains a task of a significant practical importance. [18F]FES was produced by a direct nucleophilic radiofluorination of 3-O-methoxymethyl-16,17-O-sulfuryl-16-epiestriol (MMSE), followed by acidic hydrolysis using HCl/CH3CN. [18F]Fluoride retained on a QMA carb cartridge (46 mg) was eluted by solution of 1.2 mg of tetrabutylammonium tosylate (TBAOTs) in EtOH. After fluorination reaction (0.3 mg MMSE, 1 ml of CH3CN/100 °C, 5 min) [18F]FES was isolated by single-cartridge SPE purification using OASIS WAX 3cc, elution accomplished with aqueous ethanol of different concentrations. On а GE TRACERlab FX N Pro automated module [18F]FES (formulated in normal saline with 5% EtOH) was obtained in 33 ± 3% yield (n = 5, non-decay corrected) within 32 min. Reduction of precursor amount, exclusion of azeotropic drying step and simplification of purification make the suggested method readily adaptable to various automated synthesizers and offers significant cost decrease.
Incorporation of [18F]fluorine into PET radiotracer structure has traditionally been accomplished via nucleophilic pathways. The [18F]fluoride is generated in an aqueous solution via proton irradiation of oxygen-18 enriched water and must to be introduced into water-free organic solutions in order to generate reactive species. Thus nucleophilic 18F-fluorination traditionally included steps for [18F]fluoride concentration on the anion exchange resin, followed by removal of residual water via azeotropic distillation with MeCN, a time-consuming process associated with radioactivity losses and difficult automation. To circumvent this, several adsorption/elution protocols were developed based on the minimization of water content in traditional kryptofix-based [18F]fluoride eluents. The use of pre-dried KOH/kryptofix solutions, tertiary alcohols, and strong organic bases was found to be effective. Advances in transition metal-mediated SNAr approaches for radiolabeling of non-activated aromatic substrates have prompted development of alternative techniques for reactive [18F]fluoride species generation, such as organic solutions of non-basic alkyl ammonium and pyridinium sulfonates, etc. For radiofluorinations of iodonium salts precursors, a “minimalist” approach was introduced, avoiding the majority of pitfalls common to more complex methods. These innovations allowed the development of new time-efficient and convenient work-up procedures that are easily implementable in modern automated synthesizers. They will be the subject of this review.
3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a positron emission tomography (PET) tracer useful for tumor proliferation assessment for a number of cancers, particularly in the cases of brain, lung, and breast tumors. At present [18F], FLT is commonly prepared by means of the nucleophilic radiofluorination of 3-N-Boc-5′-O-DMT-3′-O-nosyl thymidine precursor in the presence of a phase-transfer catalyst, followed by an acidic hydrolysis. To achieve high radiochemical yield, relatively large amounts of precursor (20–40 mg) are commonly used, leading to difficulties during purification steps, especially if a solid-phase extraction (SPE) approach is attempted. The present study describes an efficient method for [18F]FLT synthesis, employing tetrabutyl ammonium tosylate as a non-basic phase-transfer catalyst, with a greatly reduced amount of precursor employed. With a reduction of the precursor amount contributing to lower amounts of synthesis by-products in the reaction mixture, an SPE purification procedure using only two commercially available cartridges—OASIS HLB 6cc and Sep-Pak Alumina N Plus Light—has been developed for use on the GE TRACERlab FX N Pro synthesis module. [18F]FLT was obtained in radiochemical yield of 16 ± 2% (decay-corrected) and radiochemical purity >99% with synthesis time not exceeding 55 min. The product was formulated in 16 mL of normal saline with 5% ethanol (v/v). The amounts of chemical impurities and residual solvents were within the limits established by European Pharmacopoeia. The procedure described compares favorably with previously reported methods due to simplified automation, cheaper and more accessible consumables, and a significant reduction in the consumption of an expensive precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.