Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized by chronic brain inflammation. Leukocyte infiltration of brain tissue causes inflammation, demyelination, and the subsequent formation of sclerotic plaques, which are a hallmark of MS. Activation of proinflammatory cytokines is essential for regulation of lymphocyte migration across the blood–brain barrier. We demonstrate increased levels of many cytokines, including IL-2RA, CCL5, CCL11, MIF, CXCL1, CXCL10, IFNγ, SCF, and TRAIL, were upregulated in cerebrospinal fluid (CSF), whereas IL-17, CCL2, CCL3, CCL4, and IL-12(p40) were activated in MS serum. Interaction analysis of cytokines in CSF demonstrated a connection between IFNγ and CCL5 as well as MIF. Many cells can contribute to production of these cytokines including CD8 and Th1 lymphocytes and astrocytes. Therefore, we suggest that IFNγ released by Th1 lymphocytes can activate astrocytes, which then produce chemoattractants, including CCL5 and MIF. These chemokines promote an inflammatory milieu and interact with multiple chemokines including CCL27 and CXCL1. Of special note, upregulation of CCL27 was found in CSF of MS cases. This observation is the first to demonstrate CCL27 as a potential contributor of brain pathology in MS. Our data suggest that CCL27 may be involved in activation and migration of autoreactive encephalitogenic immune effectors in the brain. Further, our data support the role of Th1 lymphocytes in the pathogenesis of brain inflammation in MS, with several cytokines playing a central role.
The identification of rapid, reliable, and highly reproducible biological assays that can be standardized and routinely used in preclinical tests constitutes a promising approach to reducing drug discovery costs and time. This unit details a tandem, rapid, and reliable cell viability method for preliminary screening of chemical compounds. This assay measures metabolic activity and cell mass in the same cell sample using a dual resazurin/sulforhodamine B assay, eliminating the variation associated with cell seeding and excessive manipulations in assays that test different cell samples across plates. The procedure also reduces the amount of cells, test compound, and reagents required, as well as the time expended in conventional tests, thus resulting in a more confident prediction of toxic thresholds for the tested compounds. © 2016 by John Wiley & Sons, Inc.
Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE) and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA) by enzyme-linked immuno-sorbent assay (ELISA). Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.