In addition to modulating blood meal digestion and protecting the midgut epithelial cells from mechanical and chemical damage, a biological function attributed to the mosquito type I peritrophic matrix (PM) is preventing or reducing pathogen invasion, especially from Plasmodium spp. Previously, we demonstrated that chitin is an essential component of the PM and is synthesized de novo in response to blood feeding in Aedes aegypti. Therefore, knocking down chitin synthase expression by RNA interference severely disrupts formation of the PM. Utilizing this artificial manipulation, we determined that the absence of the PM has no effect on the development of Brugia pahangi or on the dissemination of dengue virus. However, infectivity of Plasmodium gallinaceum is lower, as measured by oocyst intensity, when the PM is absent. Our findings also suggest that the PM seems to localize proteolytic enzymes along the periphery of the blood bolus during the first 24 hours after blood feeding. Finally, the absence of the PM does not affect reproductive fitness, as measured by the number and viability of eggs oviposited.
Mosquito sterol carrier protein-2 (AeSCP-2) and sterol carrier protein-2-like2 (AeSCP-2L2) are members of the SCP-2 protein family with similar expression profiles in the mosquito life cycle. In an effort to understand how lipids can be transported by different SCP-2 proteins, the three-dimensional crystal structure of AeSCP-2L2 was solved at 1.7 Å resolution. AeSCP-2L2 forms a dimer and binds three fatty acids, one of which resides in a position within the internal cavity at a right angle to the others. This first report of ligand-bound dimerized protein in the SCP-2 protein family indicates that the family has a much more divergent mode of interaction with ligands than previously reported. The potential function of AeSCP-2L2 was investigated via in vivo incorporation of [ 3 H]cholesterol and [ 3 H]palmitic acid. Overexpression of AeSCP-2L2 in mosquito cells leads to an increased uptake of free fatty acid, whereas knockdown of AeSCP-2L2 in adult females decreases the accumulation of free fatty acid in the fat body from a blood meal. In contrast, overexpression or knockdown of AeSCP-2L2 has no effect on cholesterol uptake. Our results suggest that the main function of AeSCP-2L2 is as a general intracellular fatty acid carrier, as opposed to having a dedicated role in cholesterol transport.-Dyer, D. H., V. Wessely, K. T. Forest, and Q. Lan. Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J. Lipid Res. 2008. 49: 644-653.
The sterol carrier protein-x (SCP-x), a peroxisomal thiolase/nonspecific lipid binding protein, was characterized in the yellow fever mosquito, Aedes aegypti. The Aedes aegypti SCP-x (AeSCP-x) has 83% and 75% similarities to Drosophila and mammalian SCP-x, respectively. However, the AeSCP-x gene did not produce multiple transcripts, which is characteristic of the vertebrate SCP-x gene. Levels of AeSCP-x transcription were higher in larvae and pupae. Gut tissue showed the highest level of AeSCP-x mRNA in larvae. In adults, low levels of AeSCP-x transcription were detected in both sexes. Polyclonal antibodies against the sterol carrier protein-2 (SCP-2) domain of AeSCP-x detected two proteins of 62 kDa and 13 kDa. The results indicate that AeSCP-x is proteolytically cleaved after translation to produce a smaller protein that contains only the SCP-2 domain, which is similar to post-translational modification of the vertebrate's SCP-x to produce multiple products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.