A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Alpha-synuclein’s role in diseases termed “synucleinopathies”, including Parkinson’s disease, has been well-documented. However, after over 25 years of research, we still do not fully understand the alpha-synuclein protein and its role in disease. In vitro cellular models are some of the most powerful tools that researchers have at their disposal to understand protein function. Advantages include good control over experimental conditions, the possibility for high throughput, and fewer ethical issues when compared to animal models or the attainment of human samples. On the flip side, their major disadvantages are their questionable relevance and lack of a “whole-brain” environment when it comes to modeling human diseases, such as is the case of neurodegenerative disorders. Although now, with the advent of pluripotent stem cells and the ability to create minibrains in a dish, this is changing. With this review, we aim to wade through the recent alpha-synuclein literature to discuss how different cell culture setups (immortalized cell lines, primary neurons, human induced pluripotent stem cells (hiPSCs), blood–brain barrier models, and brain organoids) can help us understand aggregation pathology in Parkinson’s and other synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.