MERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV). In order to produce a vaccine that is readily scalable, we genetically fused the receptor-binding motif (RBM) of MERS-CoV spike protein into the surface of cucumber-mosaic virus VLPs. The employed CuMVTT-VLPs represent a new immunologically optimized vaccine platform incorporating a universal T cell epitope derived from tetanus toxin (TT). The resultant vaccine candidate (mCuMVTT-MERS) is a mosaic particle and consists of unmodified wild type monomers and genetically modified monomers displaying RBM, co-assembling within E. coli upon expression. mCuMVTT-MERS vaccine is self-adjuvanted with ssRNA, a TLR7/8 ligand which is spontaneously packaged during the bacterial expression process. The developed vaccine candidate induced high anti-RBD and anti-spike antibodies in a murine model, showing high binding avidity and an ability to completely neutralize MERS-CoV/EMC/2012 isolate, demonstrating the protective potential of the vaccine candidate for dromedaries and humans.
Sobemoviruses encode serine-like 3C proteases (Pro) that participate in the processing and maturation of other virus-encoded proteins. Its cis and trans activity is mediated by the naturally unfolded virus-genome-linked protein (VPg). Nuclear magnetic resonance studies show a Pro–VPg complex interaction and VPg tertiary structure; however, information regarding structural changes of the Pro–VPg complex during interaction is lacking. Here, we solved a full Pro–VPg 3D structure of ryegrass mottle virus (RGMoV) that demonstrates the structural changes in three different conformations due to VPg interaction with Pro. We identified a unique site of VPg interaction with Pro that was not observed in other sobemoviruses, and observed different conformations of the Pro β2 barrel. This is the first report of a full plant Pro crystal structure with its VPg cofactor. We also confirmed the existence of an unusual previously unmapped cleavage site for sobemovirus Pro in the transmembrane domain: E/A. We demonstrated that RGMoV Pro in cis activity is not regulated by VPg and that in trans, VPg can also mediate Pro in free form. Additionally, we observed Ca2+ and Zn2+ inhibitory effects on the Pro cleavage activity.
The agricultural importance of sea buckthorn (SBT; Hippophae rhamnoides L.) is rapidly increasing. Several bacterial and fungal pathogens infecting SBT have been identified and characterized; however, the viral pathogens are not yet known. In this study, we identified, isolated, and sequenced a virus from a wild plantation of SBT for the first time. Sequence analysis of the obtained viral genome revealed high similarity with several viruses belonging to the genus Marafivirus. The genome of the new virus is 6989 nucleotides (nt) in length according to 5′, 3′ RACE (without polyA-tail), with 5′ and 3′ 133 and 109 nt long untranslated regions, respectively. The viral genome encoded two open reading frames (ORFs). ORF1 encoded a polyprotein of 1954 amino acids with the characteristic marafivirus non-structural protein domains—methyltransferase, Salyut domain, papain-like cysteine protease, helicase, and RNA-dependent RNA polymerase. ORF1 was separated from ORF2 by 6 nt, encoding the coat protein (CP) with typical signatures of minor and major forms. Both CP forms were cloned and expressed in a bacterial expression system. Only the major CP was able to self-assemble into 30 nm virus-like particles that resembled the native virus, thus demonstrating that minor CP is not essential for virion assembly.
Sobemovirus ryegrass mottle virus (RGMoV) is a single-stranded positive virus with a 30 nm viral particle size. It exhibits T=3 symmetry, with 180 coat protein (CP) subunits forming the virus structure. The RGMoV genome comprises five open reading frames, encoding P1, Px, a membrane-anchored 3C-like serine protease, a virus genome-linked protein, P16, an RNA-dependent RNA polymerase, and a coat protein. The Sobemovirus genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was utilized to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, when the transcribed gRNA was introduced to oat plants, it failed to induce viral infection. This indicated the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. To resolve this, the complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS) - 5' RACE-seq. Only the icDNA vector containing both newly identified UTR sequences proved infectious, resulting in classical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infection in oat plants after at least one passage. The successful generation of the icDNA highlights the synergistic potential of utilizing both methods when one approach alone fails. Furthermore, this study demonstrates the reliability of HTS as a method for determining the complete genome sequence of viral genomes.
Sobemoviruses encode serine-like 3C proteases (Pro) that participate in the processing and maturation of other virus-encoded proteins. Its cis and trans activity is mediated by the naturally unfolded virus-genome-linked protein (VPg). NMR studies show a Pro-VPg complex interaction and VPg tertiary structure; however, information regarding structural changes of the Pro-VPg complex during interaction is lacking. Here, we solved a full ProVPg 3D structure of ryegrass mottle virus (RGMoV) that demonstrates the structural changes in three different conformations due to VPg interaction with Pro. We identified a unique site of VPg interaction with Pro that was not observed in other sobemoviruses and observed different conformations of the Pro β2 barrel. This is the first report of a full plant Pro crystal structure with its VPg cofactor. We also confirmed the existence of an unusual previously unmapped cleavage site for sobemovirus Pro in the transmembrane domain: E/A. We demonstrated that RGMoV Pro in cis activity is not regulated by VPg and that in trans, VPg can also mediate Pro in free form. Additionally, we observed Ca2+ and Zn2+ inhibitory activities on the Pro cleavage activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.