BackgroundIn clinical research scientific, legal as well as ethical aspects are important. It is well known that clinical investigators at university hospitals have to undertake their PhD-studies alongside their daily work and reconciling work and study can be challenging. The aim of this project was to create a web based course in clinical research bioethics (5 credits) and to examine whether the method is suitable for teaching bioethics. The course comprised of six modules: an initial examination (to assess knowledge in bioethics), information on research legislation, obtaining permissions from authorities, writing an essay on research ethics, preparing one’s own study protocol, and a final exam. All assignments were designed with an idea of supporting students to reflect on their learning with their own research.Methods57 PhD-students (medical, nursing and dental sciences) enrolled and 46 completed the course. Course evaluation was done using a questionnaire. The response rate was 78%. Data were analyzed using quantitative methods and qualitative content analysis.ResultsThe course was viewed as useful and technically easy to perform. Students were pleased with the guidance offered. Personal feedback from teachers about students’ own performance was seen advantageous and helped them to appreciate how these aspects could be applied their own studies. The course was also considered valuable for future research projects.ConclusionsEthical issues and legislation of clinical research can be understood more easily when students can reflect the principles upon their own research project. Web based teaching environment is a feasible learning method for clinical investigators.
Abstract. Multiple atmospheric properties were measured semi-continuously in the Budapest platform for Aerosol Research and Training laboratory, which represents the urban background for the time interval of 2008–2018. Data of 6 full measurement years during a decennial time interval were subjected to statistical time trend analyses by an advanced dynamic linear model and a generalized linear mixed model. The main interest in the analysed data set was on particle number concentrations in the diameter ranges from 6 to 1000 nm (N6−1000), from 6 to 100 nm (N6−100, ultrafine particles), from 25 to 100 nm (N25−100) and from 100 to 1000 nm (N100−1000). These data were supported by concentrations of SO2, CO, NO, NOx, O3, PM10 mass, as well as air temperature, relative humidity, wind speed, atmospheric pressure, global solar radiation, condensation sink, gas-phase H2SO4 proxy, classes of new aerosol particle formation (NPF), and growth events and meteorological macro-circulation patterns. The trend of the particle number concentrations derived as a change in the statistical properties of background state of the data set decreased in all size fractions over the years. Most particle number concentrations showed decreasing decennial statistical trends. The estimated annual mean decline of N6−1000 was (4–5) % during the 10-year measurement interval, which corresponds to a mean absolute change of −590 cm−3 in a year. This was interpreted as a consequence of the decreased anthropogenic emissions at least partly from road traffic alongside household heating and industry. Similar trends were not observed for the air pollutant gases. Diurnal statistical patterns of particle number concentrations showed tendentious variations, which were associated with a typical diurnal activity–time pattern of inhabitants in cities, particularly of vehicular road traffic. The trend patterns for NPF event days contained a huge peak from late morning to late afternoon, which is unambiguously caused by NPF and growth processes. These peaks were rather similar to each other in the position, shape and area on workdays and holidays, which implies that the dynamic and timing properties of NPF events are not substantially influenced by anthropogenic activities in central Budapest. The diurnal pattern for N25−100 exhibited the largest relative changes, which were related to particle emissions from high-temperature sources. The diurnal pattern for N100−1000 – which represents chemically and physically aged particles of larger spatial scale – were different from the diurnal patterns for the other size fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.