ObjectivesTo date, many artificial intelligence (AI) systems have been developed in healthcare, but adoption has been limited. This may be due to inappropriate or incomplete evaluation and a lack of internationally recognised AI standards on evaluation. To have confidence in the generalisability of AI systems in healthcare and to enable their integration into workflows, there is a need for a practical yet comprehensive instrument to assess the translational aspects of the available AI systems. Currently available evaluation frameworks for AI in healthcare focus on the reporting and regulatory aspects but have little guidance regarding assessment of the translational aspects of the AI systems like the functional, utility and ethical components.MethodsTo address this gap and create a framework that assesses real-world systems, an international team has developed a translationally focused evaluation framework termed ‘Translational Evaluation of Healthcare AI (TEHAI)’. A critical review of literature assessed existing evaluation and reporting frameworks and gaps. Next, using health technology evaluation and translational principles, reporting components were identified for consideration. These were independently reviewed for consensus inclusion in a final framework by an international panel of eight expert.ResultsTEHAI includes three main components: capability, utility and adoption. The emphasis on translational and ethical features of the model development and deployment distinguishes TEHAI from other evaluation instruments. In specific, the evaluation components can be applied at any stage of the development and deployment of the AI system.DiscussionOne major limitation of existing reporting or evaluation frameworks is their narrow focus. TEHAI, because of its strong foundation in translation research models and an emphasis on safety, translational value and generalisability, not only has a theoretical basis but also practical application to assessing real-world systems.ConclusionThe translational research theoretic approach used to develop TEHAI should see it having application not just for evaluation of clinical AI in research settings, but more broadly to guide evaluation of working clinical systems.
Family trees have long been a valuable visual tool for geneticists in identifying clusters of inherited traits and genotypes. As more data are collected, drawing the graphs by hand becomes impractical and, for this reason, we have developed the pedigree software CraneFoot. It can process any family graph with minimal computational cost by making a pedigree transformation that enables the use of a linear node positioning algorithm. The program is designed for automated drawing to printed media and efficient visual classification of genetically interesting families from large data sets. It also incorporates a robust pedigree topology check with detailed error messages.
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late last year has not only led to the world-wide coronavirus disease 2019 (COVID-19) pandemic but also a deluge of biomedical literature. Following the release of the COVID-19 open research dataset (CORD-19) comprising over 200,000 scholarly articles, we a multi-disciplinary team of data scientists, clinicians, medical researchers and software engineers developed an innovative natural language processing (NLP) platform that combines an advanced search engine with a biomedical named entity recognition extraction package. In particular, the platform was developed to extract information relating to clinical risk factors for COVID-19 by presenting the results in a cluster format to support knowledge discovery. Here we describe the principles behind the development, the model and the results we obtained.
Background: Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in healthcare environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled research environments (where these models are developed) and clinical environments for which the AI tools are ultimately intended. Objective: We have previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational value of AI models and to support successful transition to healthcare environments. In this study, we apply the TEHAI to COVID-19 literature in order to assess how well translational topics are covered. Methods: A systematic literature search for COVID-AI studies published between December 2019-2020 resulted in 3,830 records. A subset of 102 papers that passed inclusion criteria were sampled for full review. Nine reviewers assessed the papers for translational value and collected descriptive data (each study was assessed by two reviewers). Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was conducted on the Covidence software platform. Results: We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas essential for clinical translatability. Specific questions regarding external model validation, safety, non-maleficence and service adoption received failed scores in most studies. Conclusions: Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the model development stage to increase translatability into real COVID-19 healthcare environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.