Alcoholic patients are more susceptible to Strongyloides stercoralis infection. The chronic use of alcohol raises the levels of endogenous corticosteroids, which regulates the development of larvae and stimulates the differentiation of rhabditiform into infective filariform larvae, thus inducing internal autoinfection. Therefore, early diagnosis is important to prevent severe strongyloidiasis. The aim of this study was to evaluate the efficacy of parasitological methods, according to the parasite load and the number of stool samples, for diagnosis of S. stercoralis infection, as well the peripheral blood eosinophil count in alcoholic patients. A total of 330 patients were included in this study. The diagnosis was established using three parasitological methods: agar plate culture, Baermann-Moraes method and spontaneous sedimentation. Peripheral eosinophilia was considered when the level was >600 eosinophils/mm3. The agar plate culture (APC) had the highest sensitivity (97.3%). However, the analysis of multiple samples increased the sensitivity of all parasitological methods. The sensitivities of the methods were influenced by the parasite load. When the larval number was above 10, the sensitivity of APC was 100%, while in spontaneous sedimentation the sensitivity reached 100% when the larval number was above 50. In the present study, 15.4% of alcoholic patients infected with S. stercoralis (12/78) had increased peripheral blood eosinophil count (above 600 eosinophils/mm3). For an efficient parasitological diagnosis of S. stercoralis infection in alcoholic patients, repeated examination by two parasitological methods must be recommended, including agar plate culture due to its higher sensitivity. Moreover, S. stercoralis infection was associated with eosinophilia, mostly in patients excreting up to 10 larvae/g faeces.
INTRODUÇÃO A interação tectônica entre o substrato de rochas cristalinas e a cobertura sedimentar
ABSTRACT. This article shows the results of the development of a procedure called TC-ASA index which is based on the contrast of magnetic and radiometric properties between host rocks and the mineralization, being interpreted as the probability of occurrence and defining ambience where iron formation to occur. It consists in subtracting the values of total count (TC) from the analytic signal (ASA), which are products of gammaspectrometry and magnetic methods, respectively. This index was applied to the actual data referring to the iron formations of Curral Novo do Piauí, where the main mineral is magnetite, thus characterized by high magnetic susceptibility and often associated with metabasic rocks. These rocks often present low concentration of radioactive elements, enabling the identification of geological environment with potential for occurrence of iron ore. The use of this procedure allowed for the reduction of the exploration area, providing a fast target selection for geological mapping, geochemistry and ground geophysics. In addition, it supplies with important elements that will assist mining companies in setting strategic priorities.Keywords: iron ore exploration, probability of occurrence maps, gammaspectrometry, magnetometry. RESUMO.Este trabalho mostra os resultados do desenvolvimento de um procedimento aqui denominadoÍndice TC-ASA que tem por base o contraste de propriedades magnéticas e radiométricas entre as rochas encaixantes e a mineralização, sendo interpretado como probabilidade de ocorrência e delimitando ambiências propícias a ocorrências de formações ferríferas. Tal procedimento consiste na subtração dos valores de contagem total (CT) dos valores do sinal analítico (ASA), que são produtos dos métodos geofísicos gamaespectrométrico e magnetométrico, respectivamente. Esteíndice foi aplicado a dados reais coletados nas formações ferríferas de Curral Novo do Piauí, cujo principal mineralé a magnetita, caracterizada pela suscetibilidade alta e frequentemente associadaà metabásicas. Estas rochas normalmente têm baixa concentração de elementos radioativos, possibilitando a identificação de ambiências geológicas potenciais para ocorrência deste tipo de minério. A utilização deste procedimento permitiu a diminuição daárea de pesquisa em estudo de reconaissance proporcionando uma rápida seleção de alvos para mapeamento geológico, geoquímica e geofísica terrestre. Além disto, proporciona elementos importantes que auxiliam as empresas de exploração mineral na definição de suas prioridades estratégicas.Palavras-chave: prospecção de minério de ferro, mapas de probabilidade de ocorrência, gamaespectrometria, magnetometria.
ABSTRACT. The indication of geological environments with greater possibility of mineralization through indirect methods is necessary in the mining industry.In search of efficiency methods, often covering a wide range of variables in its implementation can make them geological and computationally complex and extravagant. The use of radiometric and magnetometric methods, in particular the combined use of total count with the analytic signal, can be an important alternative to infer the geological environments conducive to the occurrence of magnetite iron formations, especially in cases where the host rocks exhibit contrast to the mineralized rocks.Applying a principal components analysis (PCA) on magnetic and radiometric data in the study of iron mineralization at the region of Curral Novo do Piauí, Piauí State, we obtained a linear correlation of 0.99 between the first principal component and the radiometric total count channel. This concentration of information by reduction of the dimensionality shows that the PCA may explain, in a single component, a set of variables apparently independent, identifying the geological environment more conducive to the occurrence of iron formations.Keywords: iron formations, gammaspectrometry, magnetometry, geophysics, principal components analysis. RESUMO.A indicação de ambientes geológicos com maior possibilidade de ocorrência de mineralizações por meio de métodos indiretosé uma necessidade da indústria da mineração. Buscando eficiência, métodos abarcam uma grande gama de variáveis na sua execução, tornando-os complexos e extravagantes do ponto de vista geológico e computacional. A utilização em conjunto de métodos radiométricos e magnetométricos, principalmente a combinação dos resultados do canal da contagem total com o sinal analítico, pode ser uma importante alternativa para inferir ambientes geológicos propícios a ocorrências de formações ferríferas com magnetita, especialmente nos casos onde as rochas encaixantes apresentam contraste em relaçãoàs rochas mineralizadas. Aplicando uma análise por principais componentes (PCA) sobre dados radiométricos e magnetométricos no estudo das mineralizações ferríferas da região de Curral Novo do Piauí, PI, obteve-se uma correlação linear de 0,99 entre a primeira principal componente e o canal radiométrico da contagem total. Esta concentração de informação pela redução de dimensionalidade mostra que a PCA faz sua função ao explicar, em uma principal componente, um conjunto de variáveis, em princípio, independentes. Com isso pode-se identificar, naquele ambiente geológico, assinaturas particulares de zonas mais propíciasà ocorrência de formações ferríferas com base nos dados de contagem total e do sinal analítico.Palavras-chave: formações ferríferas, gamaespectrometria, magnetometria, geofísica, análise por principais componentes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.