The magnocellular neurosecretory cells (MNCs) of the hypothalamus regulate body fluid balance by releasing the hormones vasopressin (VP) and oxytocin (OT) in an osmolality‐dependent manner. Elevations of external osmolality increase MNC firing and hormone release. MNC osmosensitivity is largely due to activation of a mechanosensitive non‐selective cation current that responds to osmotically‐evoked changes in MNC volume and is mediated by an N‐terminal variant of the TRPV1 channel (∆N TRPV1). We report a novel mechanism by which increases in osmolality may modulate ∆N TRPV1‐mediated currents and thus influence MNC electrical behaviour. We showed previously that acute elevations of external osmolality activate the enzyme phospholipase C (PLC) in isolated MNCs. We now show that the osmotic activation of PLC has a time course and dose‐dependence that is consistent with a role in MNC osmosensitivity and that it contributes to the osmotically‐evoked increase in non‐selective cation current in MNCs through a protein kinase C‐dependent pathway. We furthermore show that the mechanism of osmotic activation of PLC requires an increase in internal Ca2+ that depends on influx through L‐type Ca2+ channels. Our data therefore suggest that MNCs possess an osmotically‐activated Ca2+‐dependent PLC that contributes to the osmotic activation of ∆N TRPV1 and may therefore be important in MNC osmosensitivity and in central osmoregulation.
Key pointsr Acutely isolated rat magnocellular neurosecretory cells (MNCs) display reversible hypertrophy when exposed to hypertonic saline (325 mosmol kg −1 ) for tens of minutes.r Osmotically evoked hypertrophy is prevented by agents that block Na + channels, TRPV1 channels (which mediate an osmotically evoked depolarization in these cells), L-type Ca 2+ channels, and exocytotic fusion and is associated with an increase in whole-cell capacitance.r Exposure to hypertonic saline activates phospholipase C leading to a decrease in plasma membrane phosphatidylinositol 4,5-bisphosphate.r Inhibition of phospholipase C or protein kinase C prevents osmotically evoked hypertrophy and activation of protein kinase C evokes hypertrophy in the absence of an increase in osmolality.r These results suggest that osmotically evoked hypertrophy is triggered by an increase in MNC action potential firing, leading to Ca 2+ influx, the activation of phospholipase C, an increase in diacylglycerol, and the activation of protein kinase C. AbstractThe magnocellular neurosecretory cells of the hypothalamus (MNCs) synthesize and secrete vasopressin or oxytocin. A stretch-inactivated cation current mediated by TRPV1 channels rapidly transduces increases in external osmolality into a depolarization of the MNCs leading to an increase in action potential firing and thus hormone release. Prolonged increases in external osmolality, however, trigger a reversible structural and functional adaptation that may enable the MNCs to sustain high levels of hormone release. One poorly understood aspect of this adaptation is somatic hypertrophy. We demonstrate that hypertrophy can be evoked in acutely isolated rat MNCs by exposure to hypertonic solutions lasting tens of minutes. Osmotically evoked hypertrophy requires activation of the stretch-inactivated cation channel, action potential firing, and the influx of Ca 2+ . Hypertrophy is prevented by pretreatment with a cell-permeant inhibitor of exocytotic fusion and is associated with an increase in total membrane capacitance. Recovery is disrupted by an inhibitor of dynamin function, suggesting that it requires endocytosis. We also demonstrate that hypertonic solutions cause a decrease in phosphatidylinositol 4,5-bisphosphate in the plasma membranes of MNCs that is prevented by an inhibitor of phospholipase C (PLC). Inhibitors of PLC or protein kinase C (PKC) prevent osmotically evoked hypertrophy, and treatment with a PKC-activating phorbol ester can elicit hypertrophy in the absence of changes in osmolality. These studies suggest that increases in osmolality cause fusion of internal membranes with the plasma membrane of the MNCs and that this process is mediated by activity-dependent activation of PLC and PKC.L. Shah and V. Bansal have contributed equally to this work.
The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.