A hybrid microgrid-powered charging station reduces transmission losses with better power flow control in the modern power system. However, the uncoordinated charging of battery electric vehicles (BEVs) with the hybrid microgrid results in ineffective utilization of the renewable energy sources connected to the charging station. Furthermore, planned development of upcoming charging stations includes a multiport charging facility, which will cause overloading of the utility grid. The paper analyzes the following technical issues: (1) the energy management strategy and converter control of multiport BEV charging from a photovoltaic (PV) source and its effective utilization; (2) maintenance of the DC bus voltage irrespective of the utility grid overloading, which is caused by either local load or the meagerness of PV power through its energy storage unit (ESU). In addition, the charge controller provides closed loop charging through constant current and voltage, and this reduces the charging time. The aim of an energy management strategy is to minimize the usage of utility grid power and store PV power when the vehicle is not connected for charging. The proposed energy management strategy (EMS) was modeled and simulated using MATLAB/Simulink, and its different modes of operation were verified. A laboratory-scale experimental prototype was also developed, and the performance of the proposed charging station was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.