Abstract:A Recommender system (RS) is an information filtering software that helps users with a personalized manner to recommend online products to Users and give suggestions about the products that he or she might like. In e-commerce, collaborative Movie recommender system assist users to select their favorite movies based on their similar neighbor's movie ratings. However due to data sparsity and scalability problems, neighborhood selection is more challenging with the rapid increasing number of users and movies. In this paper, a hybrid Collaborative Movie Recommender system is proposed that combines Fuzzy C Means clustering (FCM) with Bat optimization to reduce the scalability problem and enhance the clustering which improves recommendation quality. Fuzzy c means clustering is used to cluster the users into different groups. Bat Algorithm is used to obtain the initial position of clusters. Lastly, the proposed system creates movie recommendations for target users. The proposed system was evaluated over Movie Lens dataset. Experiment results obtained show that the proposed Algorithm can yield better recommendation results compared to other techniques in terms of Mean Absolute Error (MAE), precision and Recall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.