Background: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. Methods: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat–human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. Results: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. Conclusions: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.
Background: Studies have linked bats to outbreaks in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. Method: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total 1732 and 1866 individual bat faecal samples were collected respectively. Coronaviruses and bat species were amplified using PCR systems respectively. Results: Analysis of the coronavirus sequences revealed a high genetic diversity and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site, 16.5% and 38.9% at Magweto site for small insectivorous bats and Macronycteris gigas respectively. Conclusion: The higher risk of bat coronaviruses exposure for humans ranged from December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.
Astroviruses (AstVs) have been discovered in over 80 animal species including diverse bat species and avian species. A study on Astrovirus circulation and diversity in different insectivorous and frugivorous chiropteran species roosting in trees, caves and building basements was carried out at 11 different sites across Zimbabwe. Pooled and individual faecal sampling methods were used for this study, collection date ranged from June 2016 to July 2021. In two sites, Magweto and Chirundu, sampling was carried out at monthly intervals from August 2020 to July 2021. Astroviruses and bat mitochondrial genes were amplified using pan-AstVs and CytB /12S RNA PCR systems respectively. Phylogenetic analysis of the RdRp Astrovirus sequences revealed a high genetic diversity of astroviruses. All the bat astroviruses tested in this study clustered with the Mamastrovirus genus. Two distinct groups of the amplified sequences were identified. One group comprised of sequences isolated from Hipposideros, Rhinolophus and E. helvum spp clustered with Human Astrovirus strains: HuAstV types1-6, HuAstV-MLB1-3 and HuAstV-VA-1. A second group comprised of the majority of the sequences clustered with different strains of Bat AstVs. Results from the longitudinal study at Magweto and Chirundu showed an overall AstV prevalence of 13.7% and 10.4% respectively. Peaks of AstV infection at Chirundu coincided with the period when juveniles are 4-6 months old. Coinfection of bats with CoVs and AstVs at Magweto and Chirundu sites was 2.6% and 3.5% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.