Background: Fruits and vegetables are daily staple food of human community. It is important to include fruits and vegetables in our daily diet to remain healthy and active. Even though fruits and vegetables are healthy, but they are equally prone to pests and diseases which attack them during their time of production as well as storage, thus, degrading their yield and quality. So, to prevent these issues farmers use high amount of pesticides and other products, this enters in our body orally. A large amount of pesticides gets removed from the human body in the form of urine and fecal matter but, still some pesticides (especially chlorpyrifos) are very persistent and can remain in human body for a long term. This study aims at the presentation of a method for the determination of chlorpyrifos from grapes sample by TLC-FID technique. The residue of pesticides was extracted from the sample in ethyl acetate. The grapes sample was macerated, extracted, filtered and analyzed by the proposed method. The analyzed sample showed chlorpyrifos contamination even in the lowest amount taken for analysis. Results: The TLC-FID technique using mobile phase consist of hexane: acetone (9:1, v/v)has been found to be more effective and less tedious as chromarods were used for performing chromatographic separation. Chlorpyrifos were extracted from the samples by liquid-liquid extraction before the analysis. The method developed can be used to detect chlorpyrifos residues in a concentration as minimum as 0.02 mg/Kg.
Reports related to incidences of drug facilitated crimes (DFCs) have notably increased in recently. In such cases, victims report being assaulted or robbed while under the influence of drugs. Lorazepam (LZ) is frequently used in DFCs as it can easily make victims docile owing to its potent numbing effect. Therefore, a straightforward and green analytical method to analyze LZ in spiked food matrices in connection with criminal acts becomes important. The current study reports a simple, green, and high sample throughput analytical method for determining LZ in food and drink matrices commonly encountered in DFCs, based on recently introduced cellulose paper sorptive extraction (CPSE). For the extraction of LZ from food matrices, pristine cellulose paper (CP, commonly used laboratory filter paper) was used as a sorptive medium. Five pieces of CP (1.5″ × 1.5″ each) were dipped into diluted food matrices (cream biscuits and tea) and stirred on a rotary shaker for 30 min at 200 rpm. The CPs were then dried, and the adsorbed LZ was back-extracted into 2 mL of methanol. The extract was then subjected to GC–MS analysis in selected ion monitoring (SIM) mode. Several parameters, including CP size and number, back-extraction solvent type and volume, sample volume, extraction time and stirring speed, pH, ionic strength, elution time and speed, were thoroughly screened and optimized. Under the optimized conditions, the method was found to be linear in the range of 0.2–10 µg·mL−1 (or µg·g−1) with a coefficient of determination (R2) ranging from 0.996–0.998. The limit of detection and limit of quantification for cream biscuits were 0.054 and 0.18 µg·g−1 whereas they were 0.05 and 0.16 µg·mL−1 for tea samples. For all measurements, the relative standard deviations (%RSD) were always below 10%. Two mL of methanol per sample was used during the entire sample preparation process. The greenness of the proposed procedure was evaluated using Analytical Eco-Scale and GAPI greenness assessment tools. Finally, the CPSE–GC–MS method has been applied for the determination of LZ in forensic food samples which were used in DFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.