SummaryThe aberrant regulation of Wnt secretion is implicated in various neurological diseases. However, the mechanisms of Wnt release are still largely unknown. Here we describe the role of a C. elegans tetraspan protein, HIC-1, in maintaining normal Wnt release. We show that HIC-1 is expressed in cholinergic synapses and that mutants in hic-1 show increased levels of the acetylcholine receptor AChR/ACR-16. Our results suggest that HIC-1 maintains normal AChR/ACR-16 levels by regulating normal Wnt release from presynaptic neurons, as hic-1 mutants show an increase in secreted Wnt from cholinergic neurons. We further show that HIC-1 affects Wnt secretion by modulating the actin cytoskeleton through its interaction with the actin-binding protein NAB-1. In summary, we describe a protein, HIC-1, that functions as a neuromodulator by affecting postsynaptic AChR/ACR-16 levels by regulating presynaptic Wnt release from cholinergic motor neurons.
Communications across chemical synapses are primarily mediated by neurotransmitters and their postsynaptic receptors. There are diverse molecular systems to localize and regulate the receptors at the synapse. Here, we identify HPO-30, a member of the claudin superfamily of membrane proteins, as a positive regulator for synaptic localization of levamisole-dependent AChRs (LAChRs) at theCaenorhabditis elegans neuromuscular junction (NMJ). The HPO-30 protein localizes at the NMJ and shows genetic and physical association with the LAChR subunits LEV-8, UNC-29, and UNC-38. Using genetic and electrophysiological assays in the hermaphrodite C. elegans, we demonstrate that HPO-30 functions through Neuroligin at the NMJ to maintain postsynaptic LAChR levels at the synapse. Together, this work suggests a novel function for a tight junction protein in maintaining normal receptor levels at the NMJ.
Bonafide claudin proteins are functional and structural components of tight junctions and are largely responsible for barrier formation across epithelial and endothelial membranes. However, current advances in the understanding of claudin biology have revealed their unexpected functions in the brain. Apart from maintaining blood‐brain barriers in the brain, other functions of claudins in neurons and at synapses have been largely elusive and are just coming to light. In this review, we summarize the functions of claudins in the brain and their association in neuronal diseases. Further, we go on to cover some recent studies that show that claudins play signaling functions in neurons by regulating trafficking of postsynaptic receptors and controlling dendritic morphogenesis in the model organism Caenorhabditis elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.